期刊文献+

基于MRF模型的NSCT域SAR图像分割 被引量:2

SAR image segmentation based on MRF model in NSCT domain
下载PDF
导出
摘要 针对复杂背景下的合成孔径雷达(SAR)图像的分割问题,提出一种基于非降采样Contourlet变换(NSCT)域马尔可夫(MRF)模型的算法。该算法综合利用了MRF模型在影像分割中的优势和图像的多分辨率描述的信息,采用高斯混合模型建模各个尺度的特征场,Potts模型建模各个尺度的标记场,大尺度的分割结果直接投影到小尺度上,作为分割的初始结果。实验部分与经典的阈值分割算法和马尔可夫分割算法进行比较、分析,结果表明该算法可准确地分割目标,同时保留目标的细节信息。 An algorithm of Markov Field(MRF) model based on Non-drop Sampling Contourlet Transform(NSCT) domain is proposed for the Synthetic Aperture Radar(SAR) image under complex background. Utilization of the advantages of both the MRF model and multi-resolution description of the information, Gaussian Model can be used in the characteristics field of each scale and Potts Model also used in the mark field of each scale. Then as the initial value, large-scale segmentation results can be directly projected to the small scale. In the experimental part, comparing with the classic threshold segmentation algorithm and Markov segmentation algorithm, the result shows that target can be accurately segmented while preserving more details.
机构地区 合肥工业大学
出处 《计算机工程与应用》 CSCD 2013年第16期172-174,264,共4页 Computer Engineering and Applications
关键词 图像分割 合成孔径雷达图像 域马尔可夫模型 非降采样Contourlet变换(NSCT) image segmentation Synthetic Aperture Radar (SAR) image Markov Field (MRF) model Non-drop SamplingContourlet Transform(NSCT)
  • 相关文献

参考文献7

二级参考文献63

  • 1[1]I.McConnell, R.White, C.Oliver,R.Cook.Radar Cross-Section Estimation of SAR Images[A],Proc. SPIE[C], vol.2584,1995,pp.164~175.
  • 2[2]R.G.White.A simulated annealing algorithm for SAR and MTI images cross-section estimation[A],Proc. SPIE[C], vol.2316,1994, pp.137~145.
  • 3[3]J.Schou,H.Skriver.Restoration of Polarimetric SAR Images Using Simulated Annealing[J].IEEE Trans. Geosci. Remote Sensing, vol.39, No.9, 2001,pp.2005~2016.
  • 4[4]S.Geman,G.Geman.Stochastic Relaxation,Gibbs Distributions, and the Bayesian Restoration of Images[J]. IEEE Trans. Pattern Anal. Machine Intell., vol.PAMI-6, No.6,1984,pp.721~741.
  • 5[5]D.K.Panjwani,G.Healey.Markov Random Field Models for Unsupervised Segmentation of Textured Color Images[J]. IEEE Trans. Pattern Anal. Machine Intell., vol.17, No.10, 1995,pp939~954.
  • 6[6]Y.Dong B.C.Forester.Segmentation of radar imagery using the Gaussian Markov random field model[J].Int. J. Remote Sensing, vol. 20, No. 8,1999, pp1617~1639.
  • 7[7]M.Datcu, K.Seidel,M.Walessa.Spatial Information Retrieval from Remote-Sensing Images-Part Ⅰ: Information Theoretical Perspective[J].IEEE Trans. Geosci. Remote Sensing, vol.36, No.5, 1998,pp.1431~1445.
  • 8[8]http://www.nasoftware.co.uk/caesar.
  • 9Touzi R, Lopes A, Bousquet P. A statistical and geometrical edge detector for SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6):764-773.
  • 10Weisenseel Robert A, Karl W Clem, Castanon David A, et al. MRF-based algorithms for segmentation of SAR images[A]. In: IEEE Proceedings of the International Conference on Image Processing [C]. Chicago, Illinois, 1998, 3:770-774.

共引文献75

同被引文献30

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部