期刊文献+

基于灰色-神经网络的城市湖库水华预测研究 被引量:3

City Lake Algal Bloom Forecast Research Based on Grey-neural Network
下载PDF
导出
摘要 准确的预测水华是及时治理水污染及保护水环境的重点,而对水华形成的机理模型的深入研究是准确预测水华的关键所在.在对城市湖库藻类水华形成机理研究基础上,提出了一种基于改进NGM(1,1,k)及BP神经网络的藻类水华预测模型,结合了灰色模型建模所需信息量少及神经网络非线性预测优势,克服了灰色模型预测精度低和BP神经网络所需训练数据多的缺点,可以解决在监测信息有限条件下的藻类水华预测问题.经过实际验证表明,该模型相对神经网络预测精度高,适合应用于城市湖库藻类水华的预测. The key point of water pollution control and water environment protection is how to forecast the algal bloom accurately, further more intensive study on the algae bloom formation mechanism is the main point of algal bloom forecast. In study of the city lake algae bloom formation mechanism, an improved me- tabolism BP neural network model of NGM(1,1, k ) is proposed by combining with the benefit that the grey model modeling needs less information and the prediction advantage of neural network. The method over- comes the low prediction accuracy of grey model and the weakness that the BP neural network requires too many training data. The algae bloom forecast problem under the limited monitoring information is solved. Ex- periments show that the prediction accuracy of the grey neural network is much higher than that of the BP neural network, and the method is suitable for city lake algae bloom forecast.
出处 《测试技术学报》 2013年第4期349-353,共5页 Journal of Test and Measurement Technology
基金 山西省科技攻关计划项目(20110321025-02) 北京市科技新星计划项目(2010B007)
关键词 富营养化 灰色理论 BP神经网络 灰色-神经网络 水华预测 eutrophication grey theory BP neural network grey-neural network water bloom prediction
  • 相关文献

参考文献10

二级参考文献74

共引文献215

同被引文献37

  • 1易仲强.智能算法在湖库富营养化预测中的应用研究综述[J].水电能源科学,2010,28(8):33-36. 被引量:8
  • 2郑建军,钟成华,邓春光.试论水华的定义[J].水资源保护,2006,22(5):45-47. 被引量:57
  • 3Xu Y,Cheng C C,Zhang Y,et al.Identification of algal blooms based on support vector machine classification in Haizhou Bay,East China Sea[J].Environmental Earth Scimcese,2014,71:475-482.
  • 4刘载文,崔莉凤,王小艺,等.基于RBF神经网络的河湖水华软测量方法[D]//第26届中国控制会议论文集.北京:北京航空航天大学出版社,2007:108-111.
  • 5Bengio Y,Dlalleau 0.On the expressive power of deep architectures[D]//Proc of the 14th International Conference on Discovery Science.Berlin:Springer-Verlag,2011:18-36.
  • 6Hinton Q Osindero S,Teh Y.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
  • 7Benfio Y,Lamblin P,Popovici D,Hugo Larochelle.Greedy layer-wise training of deep networks[D]//Proc of the 12th Annual Conference on Neural Information Processing System,2006:153-160.
  • 8刘载文,吕思颖,王小艺,崔莉凤,黄振芳.河湖水华预测方法研究[J].水资源保护,2008,24(5):42-47. 被引量:14
  • 9吴巧媚,刘载文,王小艺,崔莉凤,连晓峰,许继平.小波神经网络在北京河湖水华预测中的应用[J].计算机工程与应用,2010,46(12):233-235. 被引量:10
  • 10黄佳聪,高俊峰.智能算法及其在环境预警中的应用[J].环境监控与预警,2010,2(3):5-8. 被引量:5

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部