期刊文献+

窄带FBAR带通滤波器设计 被引量:6

Design of a Narrow Band FBAR Band-Pass Filter
下载PDF
导出
摘要 由薄膜体声波谐振器构成的滤波器,其带宽受压电材料机电耦合系数的影响,较难实现窄带滤波器设计。使用ADS射频仿真软件设计了一种通带为1.18~1.20 GHz的窄带薄膜体声波滤波器,分别通过比较增加无源电容元件、改变串并联谐振器面积比、在压电振荡堆内增加一层非压电层和采用两个中心频率不同的薄膜体声波滤波器串联这四种方法,得出窄带薄膜体声波滤波器的优化设计方案。设计得到的滤波器突破了压电材料本身机电耦合系数限定的带宽值,实现了窄带要求,并且带外抑制以及带内插损等设计指标均满足要求。 The bandwidth of the filter based on the film bulk acoustic resonators (FBARs) is influenced by the electromechanical coupling coefficient of the piezoelectric material, so it is difficult to realize the design of a narrow-bandwidth filter. A narrow-bandwidth filter with the pass band of 1.18 - 1.20 GHz was designed by ADS software. By comparing four methods, adding passive capacitive elements, changing the resonance area ratio of series-parallel resonators, adding a non-piezoelectric layer in the piezoelectric stack and cascading two FBARs with different center frequencies, an optimum design of the narrow-bandwidth FBAR filter was obtained. The designed filter breaks through the limited bandwidth caused by the electromechanical coupling coefficient of the piezoelectric material to achieve the requirements of narrow-bandwidth, and the out-of-band suppression and insertion loss meet the requirements of design indexes.
出处 《微纳电子技术》 CAS 北大核心 2013年第8期487-493,共7页 Micronanoelectronic Technology
基金 中国工程物理研究院超精密加工技术重点实验室基金资助项目(2012CJMZZ00009) 西南科技大学制造过程测试技术省部共建教育部重点实验室开放课题资助项目(11ZXZK03) 西南科技大学研究生创新基金资助项目(13ycjj31 13ycjj36)
关键词 薄膜体声波谐振器(FBAR) 窄带滤波器 机电耦合系数 带宽 压电材料 先进设计系统(ADS) film bulk acoustic resonator (FBAR) narrow-band filter electromechanical coupling coefficient bandwidth piezoelectric material advanced design system (ADS)
  • 相关文献

参考文献9

  • 1魏蜻,黄显核.基于ADS仿真的FBAR滤波器的研究[J].声学技术,2009,28(4):256-259.
  • 2QI M K, ZHANG D H, PANG W, et al. High performance TD SCDMA band-pass filter based on film bulk acoustic re- sonator technology [C] // Proceedings of Microwave Confe rence. Kaohsiung, China, 2012: 547-549.
  • 3UZUNOV I, GAYDAJIEV D, YANTCHEV V. Improvement of the frequency response of FBAR filters by using parallel or series connected resonators instead of single resonators [C] // Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COM CAS). Tel Aviv, Israel, 2011: 1-9.
  • 4LOEBL H P, METZMACHER C, MILSOM R F, et al. Narrow band bulk acoustic wave filters[J]. IEEE Ultrasonics Symposium, 2004. 1: 411-415.
  • 5SHIN J S, PARK Y K, KIM Y I, et al. 1chip balanced FBAR filter for wireless handsets [C]// Proceedings of Mi- crowave Conference. Paris, France, 2010: 1257- 1260.
  • 6汤亮,郝震宏,乔东海,汪承灏.薄膜体声波谐振器的梯形射频滤波器设计[J].声学技术,2008,27(2):145-149. 被引量:5
  • 7JIN H, DONG S R, WANG D M. Design of balanced RF filter for wireless applications using FBAR technology [C] // Proceedings of IEEE Conference on Electron Devices and Solid- State Circuits. Kowloon, China, 2005: 57- 60.
  • 8HASSANME, KERHERVEE, DEVAL Y, et al. Astudy on FBAR filters reconfiguration [C] // Proceedings of IEEE International Conference. Gammarth, Tunisia, 2005: 1 - 4.
  • 9VANHELMONT F, PHILIPPE P,JANSMAN A B M, et al. A 2 GHz reference oscillator incorporating a temperature compen- sated BAW resonator [C] // Proceedings of IEEE Uhrasnnics Symposium. Vancouver, Canada, 2006: 333-336.

二级参考文献10

  • 1乔东海.基于MEMS技术的微波(RF)滤波器的设计[J].中国机械工程,2005,16(z1):158-160. 被引量:3
  • 2ZAHNG Hao, Jongjin Kim, PANG Wei, et al. 5GHz Low-phase-noise oscillator based on FBAR with low TCF[A]. Tranducer'05. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems[C]. 2005, 1: 1100-1101.
  • 3S V Krishnaswamy, J Rosenbaum, S Horwitz, et al. Film bulk acoustic wave resonator technology[J]. IEEE Ultrasonics Symposium, 1990, 1: 529-536.
  • 4Ruby R, Larson J D, Bradley P, et al. Ultraminiature high-Q filters and duplexers using FBAR technology[A]. IEEE ISSCC[C]. San Francisco, CA, USA, 2001: 120-121.
  • 5Mason W P. Physical acoustics principles & methods[M]. Vol. 1A, New York, Academic Press, 1964: 239-247.
  • 6J D Larson Ⅲ. Modified butterworth-van dyke circuit for FBAR resonators and automated measurement systems[J]. Proceedings of IEEE Ultrasonics Symposium, 2000, 1: 863- 868.
  • 7Lakin K M. Modeling of thin film resonators and filters[A]. IEEE Microwave Symposium Digest, Albuquerque[C]. NM, 1-5 June, 1992: 149-152.
  • 8Auld B A, Acoustic fields and waves in solids[M]. Vol.1, New York, Wiley & sons, 1973: 86-97.
  • 9Farina M, Rozzi T. Electromagnetic modeling of thin-film bulk acoustic resonators [J]. IEEE Transaction on Microwave Theory and Techniques, 2004, 52(11): 2496-2502.
  • 10Joseph J L, Rajan S N, Rief R, Charles G S. A sealed Cavity TFR Process for RF Bandpass filters[A]. IEDM 96 [C]. 1996:441-444.

共引文献4

同被引文献30

  • 1石莎莉,陈大鹏,丁德勇,欧毅,景玉鹏,董立军,叶甜春.MEMS器件牺牲层腐蚀释放技术研究[J].微细加工技术,2006(6):58-62. 被引量:6
  • 2王德苗,金浩,董树荣.薄膜声体波谐振器(FBAR)的研究进展[J].电子元件与材料,2005,24(9):65-68. 被引量:9
  • 3TANIGUCHI S, YOKOYAMA T, IWAKI M, et al. An air gap type FBAR filter fabricated using a thin sacrificed layer on a flat substrate[C]//S, l. :IEEE Ul- trasonics Symposium, 2007 : 600-603.
  • 4SHAO I.,PALANIAPAN M. Effect of etch holes on quality factor of bulk-mode micromechanical resonators [J]. Electronics Letters, 2008, 44(15):938 940.
  • 5EATON W P,SMITH J H. Release-etch modeling for complex surface micromachined structures[C]//S. 1. : Micromachined Devices and Components, Proceedings of SPIE, 1996,2882 : 1-13.
  • 6LAKIN K M. A review of thin-film resonator technolo- gy[J]. Microwave Magazine, IEEE, 2003,4(4) ~ 61-67.
  • 7ZHANG Y, CHEN D. Multilayer integrated film bulk acoustic resonators[M~. Shanghai: SJTU Press, 2012.
  • 8CHEN Q. Fabrication and characterization of A1N thin film bulk acoustic wave resonator[D]. Pennsylvania: University of Pittsburgh-Pittsburgh Campus, 2006: 127-143.
  • 9POZAR D M. Microwave engineering[M]. New Jersey:John Wiley ~ Sons press,2009.
  • 10熊娟,顾豪爽,胡宽,吴小鹏,吴雯.AlN薄膜体声波梯形滤波器的制备与性能分析[J].压电与声光,2009,31(6):833-835. 被引量:1

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部