期刊文献+

基于柱面共形阵列天线的快速波达方向估计 被引量:5

Fast DOA estimation based on cylindrical conformal array antenna
下载PDF
导出
摘要 由于共形天线载体曲率不同,阵列中每个阵元的方向图的指向各不相同,这导致了阵列中各个阵元极化特性(polarization diversity,PD)的差异。因此,共形阵列天线的数学模型中考虑了不同阵元的极化特性。共形阵列实现波达方向(direction of arrival,DOA)估计的过程中,主要难点在于信源方位参数与极化状态的去"耦合"。本文利用圆柱的单曲率特性,通过合理摆放子阵中的天线阵元,结合传播算子方法(propagator method,PM)和子阵分割技术,提出了一种适合于柱面共形阵列的DOA估计方法。本文的DOA估计算法不需要天线单元方向图的任何信息,不需要谱峰搜索和参数配对,计算量较小。最后通过Monte-Carlo仿真实验验证了本文算法的有效性。 The pattern of each element in the conformal array has a different direction because of the curvature of the conformal carrier, which results in the polarization diversity (PD) of each element. The polarization parameters of incident signals are considered in snapshot data model. The coupling between polarization status and parameters of source is the distinct difficulty in direction of arrival (DOA) estimation of conformal array antenna. A blind DOA estimation algorithm is proposed based on propagator method (PM) and sub-array divided technique for cylindrical conformal array antenna, in which special sub-arrays are designed. The decoupling method for DOA and polarization parameters is implemented, and a high-resolution DOA estimation algorithm is proposed. The proposed algorithm achieves the 2D-DOA estimation without the element pattern. Without spectral peaking searching and complex computation, this algorithm works well for pairing among parameters. Furthermore, the validity of this algorithm is confirmed by Monte Carlo computer simulations.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1589-1595,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61201410) 中央高校基本科研业务费重点专项资金(HEUCFZ1215)资助课题
关键词 柱面共形阵列天线 波达方向估计 传播算子算法 cylindrical conformal array antenna~ direction of arrival (DOA) estimation propagator method (PM)
  • 相关文献

参考文献19

  • 1Josefsson L, Persson P. Con formal array antenna theory and design[M]. Canada: Wiley-IEEE Press, 2006.
  • 2Wang B H, Guo Y, Wang Y L. Frequency-invariant pattern synthe- sis of conformal array antenna with low eross-polarisation[J]. IET Microzoaves, Antennas & Propagation, 2008, 2 (5) : 442 - 450.
  • 3Gao F F, Nallanathan A, Wang Y D. Improved MUSIC under the eoexistenee of both circular and noncireular sources [J]. IEEE Trans. onSignal Processing, 2008, 56(7) : 3033 -3038.
  • 4Li T, Arye N. Maximum likelihood direction finding in spatially colored noise fields using sparse sensor arrays[J]. IEEE Trans, on Signal Processing, Z011, 59(3) : 1048 - 1062.
  • 5Chen F J, Kwong S, Kok C W. ESPRIT-Like two-dimensional DOA estimation for coherent signals[J]. IEEE Trans. onAero- space and Electronic Systems, 2010, 46(3) : 1477 - 1484.
  • 6Zhuang J, Li W, Manikas A. Fast root-MUSIC for arbitrary ar- rays[J]. IETElectronic Letters, 2010, 46(2) : 174 - 176.
  • 7Doron M A, Doron E. Wavefield modeling and array processing Ⅱ: algorithms[J]. IEEE Trans. on Signal Processing, 1994, 42(10) : 2560 - 2570.
  • 8Belloni F, Richter A, Belloni F, et al. Performance of root-MU- SIC algorithm using real-world arrays[C]//Proc, of the 14th Europe Signal Processing Conference, 2006.
  • 9Richter A, Belloni F, Koivunen V. DOA and polarization esti- mation using arbitrary polarimetric array configurations[C]// Proc. of the IEEE Workshop Sensor Array and Multichannel Processing ,2006 :12 - 14.
  • 10Hyberg P, Jansson M, Ottersten B. Array interpolation and bias reduction[J]. IEEE Trans. on Signal Processing, 2004, 52(10): 2711-2720.

二级参考文献38

  • 1J Wang, Y P Zhang. Circuit model of microstrip patch antenna on ceramic land grid array package for antenna-chip codesign of highly integrated RF transceivers [J].IEEE Trans on Antennas and Propagation, 2005,53 (12) :3877 - 3883.
  • 2Malek G M. Theory and analysis of adaptive cylindrical array antenna for ultrawideband wireless communications [ J]. IEEE Trans on Wireless Communications, 2005,4 (6) : 3075 - 3083.
  • 3Giampiero CJerini,Leonardo ZappeUi. Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface[ J]. IEEE Trans on Antennas and Propagation, 2005,53 (6) : 2020 - 2030.
  • 4Daniel W Boeringer, Douglas H Wemer. Efficiency - constrained particle swarm optimization of a modified bemstein polynomial for conformal array excitation amplitude synthesis[J]. IEEE Trans on Antennas and Propagation, 2005,53 ( 8 ) : 2662 - 2673.
  • 5Stephen Jon Blank, Michael F Hute. On the empirical optimization of antenna arrays [ J ]. IEEE Antennas and Propagation Magazine, 2005,47(2) :58 - 67.
  • 6P Y Zhou, M A Ingrain. Pattern synthesis for arbitrary arrays using an adaptive array method[ J ].IEEE Trans Antennas and Propagation, 1999,47 (5) : 862 - 869.
  • 7Wang Bu-hong, Guo Ying. Array manifold modeling for arbitrary 3D conformal array antenna [ A ]. Proceedings of 2008 IEEE International Workshop on Antenna Technology[ C]. Chiba, Japan: IEEE, 2008.562 - 565.
  • 8Zi-sen Qi,Ying Guo,et al.Performance analysis of MUSIC for conformal array[ A]. 2007 International Conference on Wtreless Communications, Networking and Mobile Computing (WICOM07) [ C]. Shanghai, China: IEEE, 2007. 168 - 171.
  • 9Mathews C P. Eigen- structure techniques for 2- D angle estimarion with uniform circular arrays [ J ]. IEEE Trans on SP, 1994,42(9) :2395 - 2401.
  • 10Jian Li, R T Compton. Two-dimensional angle and polarization estimation using the ESPRIT algorithm[ J ]. IEEE Antennas and Propagation Magazine, 1992,40(5) : 550 - 555.

共引文献37

同被引文献47

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部