期刊文献+

基于证据理论的联合概率数据关联算法 被引量:12

Joint probability data association algorithm based on evidence theory
下载PDF
导出
摘要 数据关联是目标跟踪技术中的核心部分,多目标情况下的数据关联技术更是研究的重点,由于多目标量测之间的互相干扰、外部环境干扰以及传感器性能等客观因素的约束,使得量测信息部分存在着相应的量测误差,密集环境中的多目标跟踪比较困难。针对这个问题,提出的新算法利用联合概率数据关联方法进行密集杂波环境下的数据关联,结合证据理论的思想对多传感器量测信息进行优化组合,有效地减小了量测误差对跟踪目标的影响。通过仿真结果可以看出,改进算法大大提高了跟踪精度,并具有良好的抗干扰能力,适用于解决工程实际问题。 Data association technology is the key part in multi-sensor target tracking systems, and is even more important under the circumstance of multitargets. Because of the measurements of multi-targets interfering each other, the lack of priori knowledge of tracking environment and restriction of sensor’s performance, the introduced error is unavoidable during the measuring process and the tracking is difficult. Aiming at solving these problems, a new algorithm based on the joint probability data association method combining with evidence theory is used to make association under a dense clutter environment. After optimization of multi-sensor information, the influence from measure errors is lowered. From the simulation result, it can be seen that the improved algorithm greatly advances tracking accurancy and has a favourable anti-jamming ability, which is suitable for dealing with engineering problems in practice.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1620-1626,共7页 Systems Engineering and Electronics
基金 国家重点基础研究发展计划(973计划)项目(61393010101-1) 船舶工业国防科技预研项目(10J3.1.6)资助课题
关键词 信息融合 数据关联 证据理论 联合概率数据关联 information fusion data association evidence theory joint probabilistic data association (JPDA)
  • 相关文献

参考文献17

  • 1Braca P, Guerriero M, Marano S, et al. Distributed estimation with data association: is the nearest neighbor the most informa- tive? [C]//Proc. of the 12th International Conference on In- formation Fusion, 2009 : 780 - 785.
  • 2Yaakov B S, Fred D, Jim H. The probabilistic data association fil- ter[J]. IEEE Control Systems Magazine, 2009, 29(6) : 82 - 100.
  • 3Latsoudas G. A hybrid probabilistic data association-sphere de- coding detector for multiple input multiple output systems[J]. Signal Processing, 2005, 12(4) : 309 - 312.
  • 4Zhou L, Gao Q, Li W W. An improved probability data associa- tion algorithm[J]. Journal of Information and Computational Science, 2011, 8(13) : 2885 - 2892.
  • 5Fei H. Augmented state multiple model probability data associa- tion track fusion for air traffic control[C]//Proc, of the IEEE 5th International Conference on Cybernetics and Intelligent Sys tems, 2011:277 - 282.
  • 6王洋,敬忠良,胡士强,吴静静.基于整合概率数据关联的最优传感器序列研究[J].控制与决策,2011,26(8):1153-1157. 被引量:2
  • 7Blom H A P, Bloem E A. Exact Bayesian filter and joint IMM coupled PDA tracking of maneuvering targets from possibly missing and false measurements[J]. Automatica, 2006, 42(1): 127 - 135.
  • 8李辉,张安,沈莹,何胜强,程琤.基于交互式自适应概率数据关联的目标跟踪算法[J].传感技术学报,2007,20(1):172-176. 被引量:4
  • 9Zhang J, Song J X, Wu Q Z. IMMPDA algorithm for infrared target tracking based on multi-feature fusion[C]//Proc, of the Infrared Materials, Devices, and Applications, 2007 : 370 - 378.
  • 10Li L Q, Ji H B, Gao X B. Maximum entropy fuzzy clustering with application to real-time target tracking[J]. Signal Pro- cessing, 2006, 86(11) : 3432 - 3447.

二级参考文献31

  • 1王佳,于小红.轨道机动作战中的待机轨道研究[J].航天控制,2005,23(5):17-22. 被引量:7
  • 2林志贵,徐立中,周金陵.基于修改模型的冲突证据组合方法[J].上海交通大学学报,2006,40(11):1964-1970. 被引量:19
  • 3YagerR R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences.. An Intei-na- rional Journal, t987,41(2): 93-137.
  • 4Pao L Y, Frei C W. A comparison of parallel and sequential implementations of a multisensor multitarget tracking algorithm[C]. American Control Conf. Seattle, 1995, TA7: 1683-1687.
  • 5Pao L Y, Trailovc L. The optimal order of processing sensor information in sequential multisensor fusion algorithms[J]. IEEE Trans on Automatic Control, 2000, 45(8): 1532-1536.
  • 6Musicki D, Evans R, Stankovic S. Integrated probabilistic data association[J]. IEEE Trans on Automatic Control, 1994, 39(6): 1237-1241.
  • 7Bar-Shalom Y, Fortmann T E. Tracking and data association[M]. Orlando: Academic Press, 1988.
  • 8Challa S, Vo B-N, Wang X. Bayesian approaches to track existence-IPDA and random sets[C]. The 5th Int Conf on Information Fusion. Annapolis, 2002, II: 1228-1235.
  • 9Goodman I R, Mahler R, Nguyen H. Mathematics of data fusion[M]. Boston: Kluwer, Academic Publishers, 1997.
  • 10Mahler R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Trans on Aerospace and Electronics Systems, 2003, 39(3): 1152-1178.

共引文献12

同被引文献105

引证文献12

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部