期刊文献+

基于马田系统和φ_s转换的模糊积分多属性决策方法 被引量:8

Fuzzy integral multi-attribute decision making method based on Mahalanobis-Taguchi system and φ_s transformation
下载PDF
导出
摘要 在实际决策问题中,决策属性间往往存在一定的交互作用,而传统决策方法并不能有效处理。针对这种情况提出了一种基于马田系统(Mahalanobis-Taguchi system,MTS)和φs转换的模糊积分多属性决策方法。该方法针对φs转换法利用属性权重确定λ模糊测度存在的问题,提出利用Shapley值代替属性权重来确定λ模糊测度,同时提出了一种基于马田系统的Shapley值测度方法,并给出了合理性分析。最后通过实例分析了不同交互度对决策结果的敏感性,并验证了利用Shapley值确定的λ模糊测度更有利于决策。 For actual decision making problems, the traditional decision making methods can not effectively deal with the interaction between attributes. To solve this problem, a fuzzy integral multiattribute decision making method based on Mahalanobis-Taguchi system (MTS) and φs transformation is proposed. In this method,to overcome the problem of the λ fuzzy measure identification method based on φs transformation and the weights of attributes, this paper uses the Shapley value instead of weight to determine λ fuzzy measure. At the same time, this paper uses the Shapley value identification method based on Mahalanobis-Taguchi system, and the rationality of the identification method is analyzed. An illustrative example is given to analyze the sensitivity of the decision results based on different interaction degrees and verify the inference that the Shapley value is better than weight for decision making.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1702-1710,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(71271114) 教育部人文社会科学规划基金(10YJA630020)资助课题
关键词 多属性决策 马田系统 模糊测度 CHOQUET积分 multi-attribute decision making~ Mahalanobis-Taguchi system fuzzy measure Choquet integral
  • 相关文献

参考文献18

  • 1Sugeno M. Theory of fuzzy integral and its applications [D]. Tokyo: Tokyo Institute of Technology, 1974.
  • 2Modave F, Dubois D, Grabisch M, et al. A Choquet integral representation in multicriteria decision making [C]//Working Notes of the AAAI Workshop Frontiers in Soft Computing and Decision Systems, 1997 : 22 - 29.
  • 3Grabisch M. A graphical interpretation of the Choquet integral [J]. IEEE Trans. on Fuzzy Systems, 2000, 8(5) : 627 - 631.
  • 4Marichal J L, Roubens M. About the Choquet integral as an ag gregator in the framework of MCDA with interacting criteria[C]//Proc. of the 4th Meeting of the EURO Working Group on Fuzzy Sets, 1999: 1-8.
  • 5Grabisch M, Roubens M. Application of the Choquet integral in multicriteria decision making[ M] // Grabisch M, Murofushi T, Sugeno M. Fuzzy measures and integrals : theory and applica tions. Heidelberg: Physica--Verlag, 2000:348-374.
  • 6Grabisch M. Fuzzy integral in multicriteria decision making [J]. Fuzzy Sets and Systems, 1995, 69(3) : 279 - 298.
  • 7Grabiseh M, Labreuehe C. Fuzzy measures and integrals in MC DA[M]//Figueira J, Greco S, Ehrgott M. Multiple criteria de- cision analysis : state of the art surveys. New York: Springer, 2005:563 - 604.
  • 8Sugeno M. Fuzzy measure and fuzzy integrals, a survey, fuzzy automata and decision processes[M]. New York: North- Holland, 1997: 89-102.
  • 9Grabisch M, Kojadinovic I, Meyer P. A review of methods for ca- pacity identification in Choquet integral based multi-attribute utility theory: applications of the Kappalab R package [J]. European Jour- nal of Operational Research, 2008, 186(2) : 766 - 785.
  • 10Lee K M, Leekwang H. Identification of fuzzy measure by ge- netic algorithms [J]. Fuzzy Sets and Systems, 1995, 75 (3) : 301 - 309.

同被引文献104

  • 1卢建昌,韩红领,刘天宝,赵志伟.基于模糊积分的电力客户满意度综合评价[J].电网技术,2008,32(1):67-70. 被引量:17
  • 2Taguchi G, Jugulum R. The Mahalanobis-Taguchi strategy: A pattern technology system[M]. New York: JohnWiley & Sons, 2002: 19-57.
  • 3Taguchi G, Chowdhury S,Wu Y. The Mahalanobis-Taguchi system[M]. New York: McGraw-Hill, 2001: 23-60.
  • 4Edgar R, Luis A. Binary ant colony optimization applied to variable screening in the Mahalanobis-Taguchi system[J]. Expert Systems with Applications, 2013, 40(2): 634-637.
  • 5Soylemezoglu A, Jagannathan S. Mahalanobis-Taguchi system as a multi-sensor based decision making prognostics tool for centrifugal pump failures[J]. IEEE Trans on Reliability, 2011, 60(4): 864-878.
  • 6Wang Z P, Liu C. Fault diagnosis and health assessment for bearings using the Mahalanobis-Taguchi system based on EMD-SVD[J]. Trans of the Institute of Measurement and Control, 2013, 35(6): 798-807.
  • 7Lee Y C, Teng H L. Predicting the financial crisis by Mahalanobis-Taguchi system-Examples of Taiwan’s electronic sector[J]. Expert Systems with Applications, 2009, 36(4): 7469-7478.
  • 8Sugeno M. Fuzzy measure and fuzzy integrals, a survey, fuzzy automata and decision processes[M]. New York: North-Holland, 1977: 89-102.
  • 9Ishii K, Sugeno M. A model of humanevaluationprocess using fuzzy measure[J]. Int J of Man-Machine Studies, 1985, 22(1): 19-38.
  • 10Tukamoto Y. A measure theoretic approach to evaluation of fuzzy set defined on probability space[J]. J of Fuzzy Mathematics, 1982, 2(3): 89-98.

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部