期刊文献+

基于双种群协同进化的QoS全局最优Web服务选择算法 被引量:1

Dual population co-evolutionary Web services selection algorithms with QoS global optimization
下载PDF
导出
摘要 针对服务质量(quality of service,QoS)全局最优Web服务选择问题,提出了一种双种群协同进化QoS全局最优Web服务选择算法。算法在多目标离散粒子群算法基础上设计一种双种群协同进化框架以同步进行非支配排序和精英粒子保留,并定义了一种新的离散粒子位置更新算子。同时为保证粒子的多样性和算法的全局收敛能力,算法采用基于距离的粒子多样性度量算子、基于适应值排序的粒子选择算法和基于轮盘赌的全局最优解选择策略。仿真实验结果表明该算法能同时优化多个目标,并得到一组满足约束的Pareto最优解,且具有较好的性能和鲁棒性,解集的质量和分布也优于非支配排序遗传(nondominated sorting genetic algorithm,NSGA)算法的改进算法NSGA-Ⅱ,能有效解决QoS全局最优的Web服务选择问题。 To solve the problem of Web services selection with quality of service (QoS) global optimization, a novel dual population co-evolutionary Web services selection algorithm is proposed. Inspired by the improved nondominated sorting genetic algorithm (NSGA-II) and based on multi-objective discrete particle swarm optimization algorithm, the proposed algorithm uses a dual population co-evolutionary framework to do non-dominated sorting and elitist maintaining synchronously, and defines a new discrete particle position update operator. Furthermore, a distance-based diversity measurement operator, an adaptive value aware particle selection operator and a roulette-based global optimal solution selection strategy are designed to ensure particles diversity and achieve better global convergence ability. The proposed algorithm can optimize multiple objectives simultaneously and finally obtain a set of constrained Pareto optimum composite service solutions. Theoretical analysis and experimental results indicate that the proposed algorithm not only owns satisfied performance and robustness, but also has better solution quality and distribution than NSGA-II, all of which indicate that the proposed algorithm is an efficient method applied to QoSaware Web service selection with global optimization.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1758-1763,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(71102065) 重庆市重大科技攻关计划项目(2010AA2044) 中央高校基本科研业务费跨学科类重大项目(CDJZR12118801)资助课题
关键词 WEB服务选择 多目标离散粒子群算法 全局最优 服务质量 Web services selection multi-objective discrete particle swarm optimization global optimization quality of service (QoS)
  • 相关文献

参考文献17

  • 1Wu M H, Xiong X H, Ying J, et al. QoS-driven global optimi- zation approach for large scale Web services composition[J]. Journal of Computers, 2011, 6(7) : 1452 - 1460.
  • 2Mohammad A, Thomas R. Combining global optimization with local selection for efficient QoS-aware service composition[C]// Proc. of the 18th International Conference on World Wide Web, 2009: 881-890.
  • 3Yu T, Zhang Y, Lin K J. Efficient algorithms for Web services selection with end-to-end QoS constraints[J]. Association for Computing Machinery Trans. on the Web, 2007,1 (1) : 1 - 26.
  • 4Zhao X C, Song B Q, Huang P Y. An improved discrete immune optimization algorithm based on PSO for QoS-driven web service composition[J]. Applied Soft Computing, 2012,12(8) : 2208 - 2216.
  • 5Tsaia S J, Suna T Y, Liub C C, et al. An improved multi-objec- tive particle swarm optimizer for multi-objective problems[J]. Expert Systems with Applications, 2010, 37(8) :5872 - 5886.
  • 6范小芹,蒋昌俊,方贤文,丁志军.基于离散微粒群算法的动态Web服务选择[J].计算机研究与发展,2010,47(1):147-156. 被引量:48
  • 7Hu C H, Chen X H, Liang X M. Dynamic services selection al- gorithm in Web services composition supporting cross enterpri ses collaboration[J]. Journal of Central South University of Technology (English Edition), 2009,16(2): 269-274.
  • 8夏虹,李增智.粒子群算法求解Web服务组合中基于QoS的服务选择[J].北京邮电大学学报,2009,32(4):63-67. 被引量:21
  • 9王文彬,孙其博,赵新超,杨放春.基于非均衡变异离散粒子群算法的QoS全局最优Web服务选择方法[J].电子学报,2010,38(12):2774-2779. 被引量:24
  • 10Konak A, Coit D W, Smith A E. Multi-objective optimization using genetic algorithms: a tutorial[J]. Reliability Engine- ering & System Safety, 2006, 91(9): 992-1007.

二级参考文献32

共引文献80

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部