期刊文献+

集成粗糙集和阴影集的簇特征加权模糊聚类算法 被引量:9

Cluster's feature weighting fuzzy clustering algorithm integrating rough sets and shadowed sets
下载PDF
导出
摘要 特征加权是聚类算法中的常用方法,决定权值对产生一个有效划分非常关键。基于模糊集、粗糙集和阴影集的粒计算框架,本文提出计算不同簇特征权重的聚类新方法,特征权值随着每次迭代自动地计算。每个簇采用不同的特征权重可以更有效地实现聚类目标,并使用聚类有效性指标包括戴维斯-Bouldin指标(Davies-Bouldin,DB)、邓恩指标(Dunn,Dunn)和Xie-Beni指标(Xie-Beni,XB)分析基于划分的聚类有效性。真实数据集上的实验表明这些算法总是收敛的,而且对交叠的簇划分更有效,同时在噪声和异常数据存在时具有鲁棒性。 Associating feature with weights for each cluster is a common approach in clustering algorithms and determining the weight values is crucial in generating valid partition. This paper introduces a novel method in the framework of granular computing that incorporates fuzzy sets, rough sets, and shadowed sets, and calculates feature weights at each iteration automatically. The method of feature weighting can realize the clustering objective more effectively, and the clustering validity indices of DB, Dunn and XB are applied to analyze the validity of partition-based clustering. Comparative experiments results reported for real data sets illustrate that the proposed algorithms are always convergent and more effective in handing overlapping among clusters and more robust in the presence of noisy data and outlier.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1769-1776,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61139002) 公益性行业(气象)科研专项(GYHY200906043) 传感网与现代气象装备优势学科资助 江苏省高校优势学科建设工程资助课题
关键词 模糊聚类 聚类有效性 特征权重 粗糙集 阴影集 fuzzy clustering clustering validity feature weights rough sets shadowed sets
  • 相关文献

参考文献17

  • 1Bezdek J C. Pattern recognition with fuzzy objective function algorithm[M]. New York: Plenum Press, 1981.
  • 2Pedrycz W. Granular computing-the emerging paradigm[J]. Journal of Uncertain Systems, 2007, 1(1) :38 - 61.
  • 3Pedrycz W. Shadowed sets: representing and processing fuzzy sets[J]. IEEE Trans. on Systems, Man, and Cybernetics-- Part B : Cybernetics, 1998, 28(1) : 103 - 109.
  • 4Mitra S, Banka H, Pedrycz W . Rough-fuzzy collaborative elus- tering[J]. IEEE Trans. on Systems, Man, and Cybernetics-- Part B : Cybernetics, 2006, 36(4) :795 - 805.
  • 5Maji P, Pal S K. RFCM:a hybrid clustering algorithm using rough and fuzzy set[J]. Fundamenta Informaticae, 2007, 80 (4) : 475 - 196.
  • 6Frigui H, Nasraoui O. Unsupervised learning of prototypes and at-tribute weights[J]. Pattern Recognition, 2004, 37 (3) : 567 - 581.
  • 7Mitra S, Pedrycz W, Barman B. Shadowed c-means: integrating fuzzy and rough clustering [J]. Pattern Recognition, 2010, 43 (4) :1282- 1291.
  • 8Zhou J, Pedrycz W, Miao D. Shadowed sets in the characteriza- tion of rough-fuzzy clustering[J]. Pattern Recognition, 2011,44 (8) :1733- 1749.
  • 9Davies D L, Bouldin D W. A clustering separation measure[J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 1979, 1(2):224-227.
  • 10Bezdek J C, Pal N R. Some new indexes of cluster validity[J]. IEEE Trans. on System, Man, and Cybernetics Part B : Cy- bernetics, 1998, 28 (3): 301-315.

同被引文献80

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 2郑世才.观片灯的亮度与照度的关系[J].无损检测,2005,27(11):599-600. 被引量:4
  • 3FredricMH,IvicaK.神经计算原理[M].叶世伟译.北京:机械工业出版社,2007.
  • 4薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 5MartinTH HowardBD MarkHB.神经网络设计[M].北京:机械工业出版社,2002..
  • 6江苏省环境保护厅.关于印发江苏省135MW及以上燃煤机组脱硫电价考核管理规程(试行)的通知.苏环办[2010]416号[z].2010.
  • 7Philip N. What is there in a training sample? [ C]//Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on Coimbatore : IEEE,2009 : 1507-1511.
  • 8Stein R. Selecting data for neural networks[ J ]. AI Expert,1993(8) :42.
  • 9Yu L, Wang S, Lai K K. An integrated data preparation scheme for neural network data analysis[ J ]. Knowledge and Data Engineering, IEEE Transactions on,2006,18 ( 2 ) :217-230.
  • 10Frank R. Clustering of flight tracks[C]//Proc, of the American Institute of Aeronautics and Astronautics, 2010 : 1 - 9.

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部