期刊文献+

半张量积在布尔网络同步中的应用 被引量:1

The Application of Semi-tensor in Synchronization of Boolean Network
下载PDF
导出
摘要 近年来布尔型网络以及同步分析被逐渐运用于大型基因调节网络全局行为的分析研究.介绍布尔网络及同步的相关概念以及半张量积在逻辑变量中的应用.将布尔网络节点状态看作逻辑变量,建立逻辑方程,分析布尔网络同步的初始条件以及同步的状态. In recent years, boolean networks and synchronization are gradually applied to large - scale gene regulatory network analysis. The boolean networks and related synchronous concept are introduced,furthermore, the Semi -tensor product application in logic variables is introduced. Boolean networks node status is regarded as a logic variable, creating logical equation to analyse the synchronous initial conditions and status of boolean networks.
作者 张静 樊永艳
机构地区 沧州师范学院
出处 《哈尔滨师范大学自然科学学报》 CAS 2013年第2期16-19,共4页 Natural Science Journal of Harbin Normal University
关键词 布尔网络 半张量积 同步 Boolean network Semi - tensor product Synchronization
  • 引文网络
  • 相关文献

参考文献7

  • 1Liang S,Fuhrrnan S,Somogyi R.A general reverse engineering algorithm for inference of genetic network architectures[J].In Paciac Symposium on Biocomputing,1998,3:18-29.
  • 2Pal R.Generating Boolean Networks with a Prescribed Attractor Structure[J].Bioinformatics,2002,18:261-274.
  • 3Cheng D.Controllability and Observability of Boolean control networks.IEEE Trans,2009,45:1659-1667.
  • 4程代展,齐洪胜.矩阵的半张量积[M].北京:科学出版社,2007.
  • 5程代展.Semi-tensor product of matrices and its application to Morgen's problem[J].Science in China(Series F),2001,44(3):195-212. 被引量:53
  • 6Cheng Daizhan.Some application s of Semi-tensor product of matrices in algebra[J].Computers and Mathematics with Applications,2006,52:1045.
  • 7Zhou J,Chen T.Synchronization in general complex delayed dynamical Networks IEEE Trans on Circuit System,2006,53(3):7332-44.

二级参考文献17

  • 1[1]Huang L., Linear Algebra in Systems and Control Theory (in Chinese), Beijing: Science Press, 1984.
  • 2[2]Zhang, F., Matrix Theory, Basic Results and Techniques, New York: Springer-Verlag, 1999.
  • 3[3]Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed., New York: John Wiley & Sons, Inc., 1964.
  • 4[4]Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., New York: Academic Press, 1986.
  • 5[5]Willems, J. L., Stability Theory of Dynamical Systems, New York: John Wiley & Sons, Inc., 1970.
  • 6[6]Ooba, T., Funahashi, Y., Two conditions concerning common quadratic Lyapunov functions for linear systems, IEEE Trans. Automat. Contr., 1997, 42(5): 719—721.
  • 7[7]Ooba, T., Funahashi, Y., Stability robustness for linear state space models——a Lyapunov mapping approach, Sys. Contr. Lett, 1997, 29. 191—196.
  • 8[8]Cheng, D., Xue, W., Huang, J., On general Hamiltonian Systems, Proc. of ICARCV'98, Singapore, 1998, 185—189.
  • 9[9]Morgan, B. S., The synthesis of linear multivariable systems by state feedback, JACC, 1964, 64: 468—472.
  • 10[10]Falb, P. L., Wolovich, W. A., Decoupling and synthesis of multivariable control systems, IEEE Trans, Aut. Contr., 1967, 12: 651—668.

共引文献63

同被引文献4

引证文献1

相关主题

;
使用帮助 返回顶部