摘要
统计过程控制(statistical process contor,SPC)是应用统计方法对过程中的各个阶段进行监控,从而达到改进和保证质量的目的.本文在一些重要的前沿问题上展开研究,其中包括profile数据过程的监控和诊断、监测drift飘移的控制图、多元过程控制和多阶段过程的检测和诊断.本文引入并开发各种新的统计技术,紧密结合计算算法,解决这些当前质量控制领域研究的难点问题.
Statistical process control (SPC) has been widely used to monitor various industrial processes by using statistical methods and techniques, to improve and guarantee the quality of production. SPC to monitor and control the quality of such data-rich processes remains in many challenging problems. In this dissertation, we aim to address the problems with the nature mentioned above through taking advantage of modern resources. We focus on the following topics: profile monitoring and diagnosis, control charts under drift shift, multivariate SPC, and multistage process monitoring and diagnosis. We introduce and develop some new methodologies, with the help of statistical computation, to tackle these important but quite challenging problems.
出处
《中国科学:数学》
CSCD
北大核心
2013年第8期741-750,共10页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11101306
11001138
11071128
11131002和70931004)
高等学校博士学科点专项科研基金(批准号:20110031110002)
全国优秀博士论文作者专项基金(批准号:H0512101)
教育部新世纪优秀人才支持计划资助项目
关键词
统计过程控制
监控和诊断
非参数
变量选择
变点模型
SPC
monitoring and diagnosis
nonparametric
variable selection
change-point model