期刊文献+

Improved performance of InGaN light-emitting diodes with a novel sawtooth-shaped electron blocking layer 被引量:1

Improved performance of InGaN light-emitting diodes with a novel sawtooth-shaped electron blocking layer
下载PDF
导出
摘要 A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band. A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期726-731,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.U1034004,50825603,and 51210011) the Fundamental Research Funds for the Central Universities,China(Grant No.12QX14)
关键词 light-emitting diodes efficiency droop electron blocking layer light-emitting diodes, efficiency droop, electron blocking layer
  • 相关文献

参考文献22

  • 1Crawford M H 2009 IEEE J. Sel. Top. Quantum Electron. 15 1028.
  • 2Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 108504.
  • 3Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507.
  • 4Tong J H, Li S T, Lu T P, Liu C, Wang H L, Wu L J, Zhao B J, Wang X F and Chen X 2012 Chin. Phys. B 21 118502.
  • 5Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102.
  • 6Chen J, Fan G H, Zhang Y Y, Pang W, Zheng S W and Yao G R 2012 Chin. Phys. B 21 058504.
  • 7Choi S, Kim H J, Kim S S, Liu J, Kim J, Ryou J H, Dupuis R D, Fischer A M and Ponce F A 2010 Appl. Phys. Lett. 96 221105.
  • 8Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101.
  • 9Zhao H P, Liu G Y, Arif R A and Tansu N 2010 Solid State Electron 54 1119.
  • 10Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部