期刊文献+

基于有限元的弹塑性裂纹数值分析 被引量:1

Numerical analysis of elastoplastic crack based on the finite element
下载PDF
导出
摘要 在线弹性断裂力学和D-M模型的基础上,推导出了受单向拉伸含中心穿透裂纹的理想弹塑性材料J积分的解析式;通过ANSYS对弹塑性J积分进行数值计算,与推导出的解析解比较,表明了用有限元方法计算弹塑性J积分具有相当高的精度;分析了J积分与裂纹初始长度及外荷载的关系;对理想弹塑性材料塑性区大小进行了探讨,结果表明,塑性区尺寸随外荷载增大而增大,并且外荷载接近屈服应力时,裂纹塑性区尺寸趋近于无穷大,进入全面屈服。 Based on the linear elastic fracture mechanics and D--M model, J integral is derived under tension with center through-- thickness crack in the ideal elastic--plastic materials. Aiming at elastic--plastic J integral for numerical calculation through ANSYS, analysis and comparison with the deduced solution are made, showing that it is highly accurate by means of the finite element method to calculate the elastic plastic J integral .Then analysis of the relation between the J integral and the initial crack length and load is given.The ideal elastic--plastic materials' plastic zone size is studied and results show that the plastic zone size increases with the increase of load, and when the load is close to yield stress, crack plastic zone size approaches infinity, entering the overall yield.
作者 邢文金
出处 《科技创新导报》 2013年第15期91-93,共3页 Science and Technology Innovation Herald
关键词 弹塑性断裂 J积分 D-M模型 塑性区尺寸 数值模拟 ANSYS elastic-plastic fracture J integral D--M model the size of the plastic zone numerical simulation ANSYS
  • 相关文献

参考文献8

  • 1Gross D.Bruchmechanik[M].Berlin Springer Verlag,1996.
  • 2洪启超.工程断裂力学基础[M].上海:上海交通火学出版社,1987.
  • 3李罡,李林奎,温海涛,徐昌顺.基于D-M模型的研究与应用[J].喀什师范学院学报,2004,25(3):31-34. 被引量:1
  • 4刘元铺,汤幺春.J积分的数值计算及Dugdalc模型的弹塑性修正系数φ的适用范围[J].西北工业大学学报,1987(4).
  • 5郦正能 何庆芝.工程断裂力学[M].北京:航空航天大学出版社,1993..
  • 6中国航空院.应力强度因子手册[M].北京:科学出版社,1993.
  • 7赵海涛,石朝霞,战玉宝.基于ANSYS的J积分计算与分析[J].煤矿机械,2007,28(5):26-27. 被引量:7
  • 8李成,铁瑛,郑艳萍.弹塑性材料中裂纹的仿真研究[J].应用基础与工程科学学报,2011,19(5):810-816. 被引量:2

二级参考文献12

共引文献11

同被引文献16

  • 1YANG Da-peng,CHEN Xi,ZHAO Yao,LI Tian-yun.The J Integral of a Slightly Curved Elasticity-plasticity Crack when Enduring Quasi Static Loads[J].International Journal of Plant Engineering and Management,2014,19(1):6-11. 被引量:1
  • 2张玉峰,朱以文,丁宇明.有限元分析系统ABAQUS中的特征技术[J].工程图学学报,2006,27(5):142-148. 被引量:19
  • 3庄卓,张帆,岑松.ABAQUS非线性有限元实例[M].北京:科学出版社,2006.
  • 4PROSENJIT D, SINGH I V, JAYAGANTHAN R. An ex- perimental evaluation of material properties and fracture simulation of cry rolled 7075 A1 alloy[J]. Journal of Mate- rials Engineering and Performance, 2012, 21 (7) : 1167- 1181.
  • 5BOUVARD J L, CHABOCHE J L, FEYEL F. A cohesive zone model for fatigue and creep : fatigue crack growth in single crystal super alloys[J]. International Journal of Fa- tigue, 2009,31 (5) : 868-879.
  • 6MARIANI S, PEREGO U. Extended finite element meth- od for quasi-brittle fracture[J]. International Journal for Numerical Methods in Engineering, 2003, 58 (2) : 103- 126.
  • 7MOES N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Frac- ture Mechanics, 2002,69 (7) : 813-833.
  • 8ROE K L, SIEGMUND T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003,70(2) :209-232.
  • 9LIU P F, ZHANG B J, ZHENG J Y. Finite element analy- sis of plastic collapse and crack behavior of steel pressure vessels and piping using XFEM[J]. Journal of Failure Analysis and Prevention, 2012, (12) : 707-718.
  • 10GOLEWSKI G L, GOLEWSKI P, SADOWSKI T. Nu- merical modeling crack propagation under Mode ]I frac- rare in plain concretes containing siliceous fly-ash addi- tive using XFEM method[J]. Computational Materials Science, 2012,62( 1 ) :75-78.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部