期刊文献+

纳米针状氧化镓光催化降解纯水和废水中全氟辛酸 被引量:19

Photocatalytic decomposition of perfluorooctanoic acid in pure water and wastewater by needle-like nanostructured gallium oxide
下载PDF
导出
摘要 采用聚乙烯醇调控的水热法合成了对全氟辛酸(PFOA)有高光催化活性的纳米针状Ga2O3. 其颗粒长3-6 μm, 宽100-200nm, 具有较大的比表面积(25.95 m2/g)和纳米孔结构(4-25 nm). 在普通紫外光照射下(λ = 254 nm), 纳米针状Ga2O3光催化降解纯水中PFOA的反应半衰期为18.2 min, PFOA的一级反应降解动力学常数为2.28 h 1, 分别为商品Ga2O3和TiO2作为催化剂时的7.5和16.8倍. 此外, 当纳米针状Ga2O3与真空紫外光(λ = 185 nm)结合时, 不仅可以更高效地降解纯水中的PFOA (反应速率常数4.03h 1), 而且能有效消除废水中共存有机物的影响, 从而高效分解废水中的PFOA (反应速率常数3.51 h 1), 且此方法的能耗远远低于文献报道的其他方法的能耗值. Nanostructured β‐Ga2O3 with a needle‐like structure was synthesized by a polyvinyl alcohol(PVA)assisted hydrothermal method and subsequent heat treatment.It has a high specific surface area(25.95 m2/g) and large number of nanopores(4-25 nm),and it exhibited good photocatalytic activity for perfluorooctanoic acid(PFOA) decomposition in pure water unde UV irradiation(λ = 254 nm).PFOA had a half‐life of 18.2 min,and the first order rate constant(2.28 h-1) for PFOA decomposition with the needle‐like β‐Ga2O3 was 7.5 and 16.8 times higher,respectively,than with commercial Ga2O3 and TiO2(P25).In addition,in combination with vacuum UV(VUV) irradiation(λ = 185 nm),the needle‐like β‐Ga2O3 showed high activity for the removal of trace PFOA in both pure water and wastewater,with first order rate constants of 4.03 and 3.51 h-1,respectively.The adverse effect that coexisting natural organic matters in wastewater have on the decomposition of PFOA was mostly eliminated with VUV irradiation,and the energy consumption in this method was much less than the values reported for other methods in the literature.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2013年第8期1551-1559,共9页
基金 国家自然科学基金(21177071 21221004) 国家重点基础研究发展计划(973计划 2013CB632403)~~
关键词 纳米材料 氧化镓 全氟辛酸 光催化 真空紫外光 Nanomaterial Gallium oxide Perfluorooctanoic acid Photocatalysis Vacuum ultraviolet
  • 相关文献

参考文献27

  • 1Benskin J P, Yeung L W Y, Yamashita N, Taniyasu S, Lam P K S,Martin J W. Environ Sci Technol, 2010, 44:9049.
  • 2Zhang T, Wu Q, Sun H W, Zhang X Z, Yun S H, Kannan K. Environ Sci Technol, 2010, 44:4341.
  • 3Shin H M, Vieira V M, Ryan P B, Detwiler R, Sanders B, Steenland K, Bartell S M. Environ Sci Technol, 2011, 45:1435.
  • 4Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, Watanabe I, Tanabe S, Kannan K. Chemosphere, 2008, 72:1409.
  • 5Wania F. Environ Sci Technol, 2007, 41:4529.
  • 6Zhao G P, Wang J, Wang X F, Chen S P, Zhao Y, Gu F, Xu A, Wu L J. Environ Sci Technol, 2011, 45:1638.
  • 7Yang J H. Chemosphere, 2010, 81:548.
  • 8Nolan L A, Nolan J M, Shofer F S, Rodway N V, Emmett E A. Reprod Toxicol, 2009, 27:231.
  • 9Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Environ Sci Technol, 2006, 40:32.
  • 10Schultz M M, Higgins C P, Huset C A, Luthy R G, Barofsky D F, Field J A. Environ Sci Technol, 2006, 40:7350.

同被引文献122

引证文献19

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部