期刊文献+

基于鉴别性向量空间模型的语种识别 被引量:1

Discriminative vector space model based language recognition
原文传递
导出
摘要 传统语种识别中训练数据库的规模庞大,对于语种分类有鉴别性的信息大量重叠,且训练数据的不同信道条件、不同来源都会对训练和测试有一定干扰。针对这些问题,提出一种鉴别性向量空间模型(D-VSMs)建模方法。D-VSMs能够自动过滤训练集中信息重叠的数据,使得每一个支持向量机的训练数据都有针对性,从而用较少的训练数据能取得较好的分类效果。在美国国家标准技术局(NIST)2009年语种识别测试中,D-VSMs只用了原训练数据的25%,计算量是传统并行音素识别器后接向量空间模型(PPRVSM)的10%,等错误率在30s、10s和3s的测试条件下分别比传统PPRVSM下降了12.75%、15.89%以及7.33%。 Conventional language recognition tasks are limited by the need for large training datasets,in which most of the discriminative information is overlapped.Moreover,the non-language variabilities(such as channel and speaker differences) also affect the performance of language recognition systems.This paper describes a method using discriminative vector space models(D-VSMs) where the overlapping training information is automatically eliminated.Thus,every VSM is trained for one special situation,and the whole system has good performance.D-VSMs only use 30% of the training data of the baseline system and cost only 10% computation of the baseline with the equal error rate(EER) for the system in the National Institute of Standards and Technology(NIST) Language Recognition Evaluation(LRE) 2009 Database reduced 12.75%,15.89% and 7.33% in 30 s,10 s and 3 s tests.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期796-799,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金项目(61005019 61273268)
关键词 语种识别 鉴别性向量空间模型(D-VSMs) 并行音素识别器后接向量空间模型(PPRVSM) language recognition discriminative vector space models(D-VSMs) parallel phone recognizer followed by vector space model(PPRVSM)
  • 相关文献

参考文献12

  • 1Zissman M A. Comparison of four approaches to automatic language identification of telephone speech [J]. IEEE Trans on Speech and Audio Processing, 1996, 4(1) : 31 -44.
  • 2LI Haizhou, MA Bin, Lee C H. A vector space modeling approach to spoken language identification [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(1): 271-284.
  • 3Huang X, Lee K F. On speaker-independent, speaker-dependent, and speaker-adaptive speech recognition [J]. IEEE Transactions on Speech and Audio Processing, 1993, 1(2):150-157.
  • 4Newman M E J. Power laws, Pareto distributions and Zipf's law [J]. Contemporary Physics, 2005, 46(5) : 323 - 351.
  • 5Malisiewicz T, Gupta A, Efros A A. Exemplar-SVMs for visual obieet detection, label transfer and image retrieval [J/OL]. [2013-04-10]. http: //www. icml. cc/2012/papers/ 946. pdf.
  • 6Viola P, Jones M. Fast and Robust Classification Using Asymmetric Adaboost and a Detector Cascade [R/OL]. E2013-04-10]. http: //www2. it. lut. fi/kurssit/03-04/010970000/ lectures/papers/violaNIP-01, pdf.
  • 7邓妍,张卫强,刘加.基于音素解码的语种识别系统联合自适应算法研究[J].自动化学报,2012,38(4):652-658. 被引量:3
  • 8TONG Rong, MA Bin, LI Haizhou, et al. A target-oriented phonotactic front end for spoken language recognition [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2009, 17(7) : 1335 - 1347.
  • 9Malisiewicz T, Gupta A, Efros A A. Ensemble of exemplar-SVMs for object detection and beyond [C]// 13th IEEE International Conference on Computer Vision. Barcelona, Spain, 2011:89-96.
  • 10ZHANG Weiqiang HOU Tao LIU Jia.Discriminative Score Fusion for Language Identification[J].Chinese Journal of Electronics,2010,19(1):124-128. 被引量:2

二级参考文献17

  • 1Zissman M A. Comparison of four approaches to automatic language identification of telephone speech[J].IEEE Transaction s on Speech and Audio Processing,1996,(01):31-44.doi:10.1109/TSA.1996.481450.
  • 2Li H,Ma B,Lee C H. A vector space modeling approach to spoken language identification[J].IEEE Transactions on Audio Speech and Language Processing,2007,(01):271-284.doi:10.1109/TASL.2006.876860.
  • 3Gauvain J L,Messaoudi A,Schwenk H. Language recognition using phone lattices[A].Jeju Island,Korea:ISCA,2004.1283-1286.
  • 4Lippmann R P,Carlson B A. Speech recognition by humans and machines under conditions with severe channel variability and noise[A].Orlando,USA:SPIE,1997.46-57.
  • 5Huang X D,Lee K F. On speaker-independent,speaker-dependent,and speaker-adaptive speech recognition[J].IEEE Transactions on Speech and Audio Processing,1993,(02):150-157.
  • 6Shen W,Reynolds D. Improved phonotactic language recognition with acoustic adaptation[A].Antwerp,Belgium:ISCA,2007.358-361.
  • 7BenZeghiba M F,Gauvain J L,Lamel L. Context-dependent phone models and models adaptation for phonotactic language recognition[A].Brisbane,Australia:ISCA,2008.313-316.
  • 8Xu B,Song Y,Dai L. The adaptation schemes in PR-SVM based language recognition[A].Kunming,China:IEEE,2008.1-4.
  • 9Richardson F S,Campbell W M. Language recognition with discriminative keyword selection[A].Las Vegas,USA:IEEE,2008.4145-4148.
  • 10Matejka P,Schwarz P,Cernocky J,Chytil P. Phonotactic language identification using high quality phoneme recognition[A].Lisbon,Portugal:ISCA,2005.2237-2240.

共引文献3

同被引文献14

  • 1Yu L J, Ai H L. Research on the marketing mode of searching enginebased on ecommerce environment. Applied Mechanics and Materials, 2013 ; 42(7) : 2846-2850.
  • 2Jian L, Niu X, Xia Z, et al. A novel algorithm for validating peptide identification from a shotgun proteomies search engine. Journal of Proteome Research, 2013; 12(3) : 1108-1119.
  • 3Shih B Y, Chen C Y, Chen Z S. An empirical study of an internet marketing strategy for search engine optimization. Human Factors and Ergonomics in Manufacturing & Service Industries, 2013 ; 23 ( 6 ) : 528-540.
  • 4Singer G, Norbisrath U, Lewandowski D. Ordinary search engine us- ers carrying out eomplex search tasks. Journal of Information Science, 2013; 39(3): 346-358.
  • 5Wang J, Ma H, Tang Q, et al. Efficient verifiable fuzzy keyword search over encrypted data in cloud computing. Computer Science and Information Systems, 2013 ; 10(2) : 667--684.
  • 6Rajagopal D, Cambria E, Olsher D, et al. A graph-based approach concept extraction and semantic similarity detection Proceedings of the 22nd International Conference on World Wide Web Companion, International World Wide Web Conferences Steering Committee, 2013:565-570.
  • 7Peng X P, Niu Z D, Huang S. Query suggestion based on the query semantics and clickthrangh data. Advanced Science Letters, 2012; 9 ( 1 ) : 748-753.
  • 8Bordogna G, Campi A, Psaila G, et al. Disambiguated query sug- gestions and personalized content-similarity and novelty ranking of clustered results to optimize web searches. Information Processing & Management, 2012; 48(3) : 419-437.
  • 9Hong Y, Vaidya J, Lu H. Search engine query clustering using top- k search results. Proceedings of the 2011 IEEE/WIC/ACM Interna- tional Conferences on Web Intelligence and Intelligent Agent Tech- nology-Volume 01 ,IEEE Computer Society, 2011 : 112-119.
  • 10Aiello L M, Donato D, Ozertem U, et al. Behavior-driven clustering of queries into topics. Proceedings of the 20th ACM InternationalConference on Information and Knowledge Management, ACM, 2011 : 1373-1382.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部