期刊文献+

基于代价敏感SVM优化组合算法的微钙化簇识别 被引量:1

Microcalcification Clusters Recognition Based on Optimized Cost-Sensitive SVM Combinational Algorithm
下载PDF
导出
摘要 微钙化簇是乳腺癌一个重要的早期发现,现有的检测技术为了达到高敏感性要求,产生很多假阳性数据.根据微钙化簇特点,提出一种整体和局部相组合的分类识别策略,并根据真假阳性样本错分代价的不同,使用代价敏感SVM方法进行分类学习.在构造分类器模型过程中利用粒子群进行分类器的参数优化及特征集合的选择,以提升分类学习的泛化能力.该算法在保证高敏感性的同时,降低了过多的假阳性数据,并删除了冗余和不相关的特征.实验结果表明,基于粒子群优化的代价敏感SVM组合分类算法提高了传统方法的识别能力. Microcalcification clusters(MCs)are important signs for early breast cancer detection.The existing initial detection methods result in lots of false positive data because of the requirements of high sensitivity.A classification strategy combining with global and local views was proposed based on MCs characteristics.The cost-sensitive SVM classification algorithm was employed according to different misclassification costs of true and false positive instances.In the construction of classification model,the parameters and feature subset were optimized with particle swarm method to enhance the generalization performance.The ensemble method reduces excessive false positive data but with high sensitivity,and removes redundant and irrelevant features.Experimental results show that the proposed method improves the performance of traditional methods on microcalcification clusters recognition.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期1100-1104,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61001047) 中央高校基本科研业务费专项资金资助项目(N110618001)
关键词 微钙化簇检测 计算机辅助诊断 代价敏感学习 组合分类 粒子群优化 特征选择 microcalcification cluster detection computer-aided diagnosis cost-sensitive learning ensemble classification particle swarm optimization feature selection
  • 相关文献

参考文献18

  • 1Astley S M, Gilbert F J. Computer-aided detection in mammography [ J ]. Clinical Radiology, 2004,59 ( 5 ) : 390 - 399.
  • 2Balakumaran T, Vennila I, Shankar C G. Microcalcification detection using multiresolution analysis and neural network [ J]. International Journal of Recent Trends in Engineering, 2009,2(2) :208 -211.
  • 3Cheng H D,Liu Y M, Freimanis R I. A novel approach to microcalcification detection using fuzzy logic technique[ J]. IEEE Transactions on Medical Imaging, 1998,17 ( 3 ) :442 - 450.
  • 4Karahaliou A N, Boniatis I S, Skiadopoulos S G, et al. A texture analysis approach for characterizing microcalcifications on mammograms [ C ]//Proceedings of International Special Topic Conference on Information Technology in Biomedicine. Ioannina,2006 : 251 - 257.
  • 5Marrocco C, Molinara M, D'Elia C, et al. A computer aided detection system for clustered microcalcifications [ J ]. Artificial Intelligence in Medicine ,2010,50( 1 ) :23 - 32.
  • 6Papadopoulos A, Fotiadis D I, Likas A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines [ J ]. Artificial Intelligence in Medicine, 2005,34 ( 2 ) : 141 - 150.
  • 7常甜甜,刘红卫,王宇,冯筠.基于分组特征多核支持向量机的微钙化簇检测[J].系统仿真学报,2010,22(5):1159-1163. 被引量:3
  • 8Kubat M, Matwin S. Learning when negative examples abound [ C ]// Proceedings of Machine Learning : ECML. Prague: Springer Berlin Heidelberg, 1997 : 146 - 153.
  • 9Fawcett T. An introduction to ROC analysis [ J ]. Pattern Recognition Letters ,2006,27 ( 8 ) :861 - 874.
  • 10Davenport M A. The 2v-SVM: a cost-sensitive extension of the v-SVM, Technical Report TREE 0504 [ R/OL ]. Rice: Rice University, 2005 [ 2012 - 12 - 16 ]. http ://www. ece. rice. edu/- md.

二级参考文献15

  • 1蔺发军,刘成国,成思,杨玉萍.海上大气波导的统计分析[J].电波科学学报,2005,20(1):64-68. 被引量:82
  • 2王宇.基于SVM的计算机辅助检测系统[D].西安:西安电子科技大学,2008.
  • 3S M Astley, F J Gilbert. Computer-aided detection in mammography [J]. Clinical Radiology (S0009-9260), 2004, 59(5): 390-399.
  • 4H D Cheng, Xiaopeng Cai, Xiaowei Chea, et al. Computer-aided detection and classification of Microcalcification in mammograms: a survey [J]. Pattern Recognition (S0031-3203), 2003, 36(12): 55-77.
  • 5K Thangavel, M Karnan, R Sivakumar, A Kaja Mohideen. Automatic Detection of Mierocalcification in Mammograms-A Review [J]. International Journal on Graphic Vision and Image (S1687-398X), 2005, 5(5): 31-61.
  • 6Armando Bazzani, Bevilacque A, Bollini D, et al. An SVM classifier to separate false signals from microcalcifications in digital mammograms [J]. Phys. Med. Biol (S0031-9155), 2001, 46:1651 - 1663.
  • 7A Papadopoulos, D I Fotiadis, A Likas. Characterization of Clustered Microcalcification in digitized mammograms using neural networks and support vector machines [J]. Artificial Intelligence in Medicine (S0933-3657), 2004, 34(2): 141-150.
  • 8Liyang Wei, Yongyi Yang, Robert. M. Nishikawa, et al. A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications [J]. IEEE Transaction on Medical Imaging (S0278-0062), 2005, 24(3): 371-380.
  • 9Issan EI-Naqa, Yongyi Yang, Miles N. Wemick, et al. A support vector machine approach for detection of Microcalcification [J]. IEEE Transactions on Medical Imaging (S0278-0062), 1994, 21(12): 1552-1563.
  • 10Ying Li, Jianmin Jiang. Combination of SVM Knowledge for Microcalcification Detection in Digital Mammograms [C]// IDEAL, 2004, LNCS 3177. Berlin, Germany: Springer, 2004: 259-365.

共引文献2

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部