期刊文献+

基于改进的AdaBoost人脸检测算法的研究 被引量:3

Research on Face Detection Based on Improved AdaBoost Algorithm
下载PDF
导出
摘要 人脸检测是计算机视觉领域的基础研究,在视频监控、自动人脸识别等领域有着重要应用价值。针对传统的AdaBoost算法用于人脸检测时需要的特征数目多、检测速度慢的问题,提出一种基于改进的AdaBoost人脸检测算法。实验结果表明,相对于传统的AdaBoost人脸检测算法,该算法使用较少的特征即可达到较高的检测准确率,检测速度得到显著提高。 Face detection is a fundamental research theme in the topic of computer vision,and it has a broad application in many fields such as video surveillance ,automatic face recognition ,etc. To improve the detection speed of AdaBoost based face detection algorithm, proposes a rapid im- proved AdaBoost based face detection algorithm. Experiments shows that, compared with the current algorithm less features are selected in the inspection, and a high detection correct rate is achieved with the proposed algorithm.
作者 丁知平
出处 《现代计算机》 2013年第15期9-13,共5页 Modern Computer
关键词 人脸检测 ADABOOST算法 Face Detection AdaBoost
  • 相关文献

参考文献8

  • 1Yang Ming-Hsuan,David J Kriegman, Narendra Ahuja.De- tecting Faces in Images :A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 ( 1 ):34- 58.
  • 2P Viola,M Jones. Rapid Object Detection using a Boosted Cascade of Simple Features [C]. IEEE Proceedings of the Computer Vision and Patton Recognition Conference, Decem- ber 11-13 ,Hawaii ,USA ,2001.
  • 3梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:354
  • 4Viola P, Jones M. Robust Real Time Object Detection [C]. Proceedings of 2nd International Workshop on Statistical andComputational Theories of Vision,2001.
  • 5刘天键.基于熵的特征选择的AdaBoost改进算法[J].闽江学报,2009,4,30(2):60-64.
  • 6Rongye Liu. An Unsupervised Feature Selection Algorithm: Laplacian Score Combined with Distance-Based Entropy Measure, Third International Symposium on Intelligent Infor- mation Technology Application, 2009. Nov.21-22 2009, 65- 68.
  • 7孙宁,邹采荣,赵力.人脸检测综述[J].电路与系统学报,2006,11(6):101-108. 被引量:39
  • 8XIAO R, L IM J, ZHANG H J. Robust Multipose Face De- tection in Images [J]. IEEE Trans Circuits and System for Video Technology, 2004, 14 ( 1 ):31-41.

二级参考文献112

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献379

同被引文献28

  • 1孙宁,邹采荣,赵力.人脸检测综述[J].电路与系统学报,2006,11(6):101-108. 被引量:39
  • 2李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 3XU Shi-biao,MA Guang-hui,MENG Wei-liang. Statistical Learning Based Facial Animation [C]//National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences, 2013:542-550.
  • 4Viola P,Jones M. Rapid object detection using a boosted cascade of simple features[J]. Proc.Of Conf.On Computer Vision and pattern Recognition, Kauai,Hawaii, USA, 2001: 511-518.
  • 5严云洋,郭志波,杨静宇.基于双阈值的增强型AdaBoost快速算法[J].计算机工程,2007,33(21):172-174. 被引量:9
  • 6Freund Y, Schapire R E. A short introduction to boosting[J]. Journal of Japanese Society for Artificial Intelligence, 1999,14(5):771-780.
  • 7缪丹权,郑河荣,顾国民. 基于优化加权参数的AdaBoost人脸检测算法[EB/OL].http://d.wanfangdata.com.cn/Periodical_pre_7abaaa43-f8fe-42e3-be76-206ecf9de841.aspx, 2013-02-20.
  • 8Zhang Huaxun, Xie Yannan, Xu Cao. A classifier training method for face detection based on AdaBoost[C]//2011 International Conference on Transportation, Mechanical and Electrical Engineering. 2011:731-734.
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001,1:511-518.
  • 10严云洋. 图像的特征抽取方法及其应用研究[D]. 南京:南京理工大学, 2008.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部