期刊文献+

Finite element analysis of the angular distortion and residual stress in underwater wet welding

Finite element analysis of the angular distortion and residual stress in underwater wet welding
下载PDF
导出
摘要 In underwater environment, the shape, voltage, and energy density of the welding arc vary because of the high pressure and there are notable changes in workpiece cooling conditions due to the strong cooling effect of water. As a result, there are clear differences between the residual stress and thermal distortion in underwater wet welding and those in conventional welding (in air). Considering these process features, a thermo-mechanical finite element model of underwater wet bead-on-plate welding was established. The influences of the water compressing action to the arc and the enhanced heat losses caused by the surrounding water on the residual stress and the angular distortion of the workpiece were analyzed. Results show that the angular distortion gets smaller in deeper water, and that the longitudinal residual stress gets smaller as water flows faster. In underwater environment, the shape, voltage, and energy density of the welding arc vary because of the high pressure and there are notable changes in workpiece cooling conditions due to the strong cooling effect of water. As a result, there are clear differences between the residual stress and thermal distortion in underwater wet welding and those in conventional welding (in air). Considering these process features, a thermo-mechanical finite element model of underwater wet bead-on-plate welding was established. The influences of the water compressing action to the arc and the enhanced heat losses caused by the surrounding water on the residual stress and the angular distortion of the workpiece were analyzed. Results show that the angular distortion gets smaller in deeper water, and that the longitudinal residual stress gets smaller as water flows faster.
出处 《China Welding》 EI CAS 2013年第2期6-11,共6页 中国焊接(英文版)
关键词 residual stress DISTORTION underwater wet welding finite element analysis residual stress, distortion, underwater wet welding, finite element analysis
  • 相关文献

参考文献1

二级参考文献1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部