期刊文献+

一类半线性Keldysh型方程解的注记

A Note on the Solution of a Class of Keldysh-Type Equations
下载PDF
导出
摘要 Keldysh方程是在研究跨音速管道流问题时导出的一个简化的数学模型,也是研究混合型偏微分方程模型的一个典型代表.对于其含有非零源项的退化双曲部分的初值问题,本文利用部分Fourier变换与ODE求解的办法给出了相应线性方程解的一个显式表达式及其全局一致估计,并在这个估计的基础上利用不动点定理建立了一类半线性问题的解的全局存在性.同时给出了解的奇性传播可以仅沿一支特征线传播的一个例子. Keldysh equation is a mathematical model which was derived in studying fluid dynamics, and also is a typical example of mixed type partial differential equations. For the initial value problem of its degenerate hyperbolic part with nonzero source term,we find a solution by use of partial Fourier transformation and 0DE's method, and then derive its a global uniform estimate. Based on it and the fixed point theorem,we establish the global existence for solution of a class of semilinear problem. Meanwhile,we find an example to desmontrate the propogation of singularity which is only along one of the characteristics.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期5-9,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(11001122) 南京工程学院科研基金(YKJ201113 QKJC2010013)
关键词 Keldysh型方程 初值问题 存在性 奇性传播 Keldysh-type equation, initial value problem, existense, singularity propogation
  • 相关文献

参考文献7

  • 1Yagdjian K. Global existence for the n-dimensional semilinear Tricomi -type equations[J] . Comm Partial Differential Equations, 2006,31(4/6) :907-944.
  • 2Zhang Kangqun. Existence and regularity of solution to the generalized Tricomi equation with a singular initial datum at a point[J] . Acta Math Sinica,2011,28(6):1 135-1 154.
  • 3Chen Shuxing. The fundamental solution of the Keldysh type operator[J] . Science in China Series A: Mathematics ,2009 ,52 (9) : 1 829-1 843.
  • 4Suneica Canic, Barbara Lee Keyfitz. A smooth solution for a keldysh type equation[J] . Communications in Partial Differential Equations ,1996 ,21 (112) :319-340.
  • 5Qi Minyou. On the Cauchy problem for a class of hyperbolic equations with initial data on the parabolic degenerating line[J] . Acta Math Sinica,1958,8 :521-529.
  • 6Zhang Kangqun. Existence of solution for the n-dimension second order semilinear hyperbolic equations[J].Journal of Mathematical Analysis and Applications ,2011,381 (1) :427-440.
  • 7Erdelyi A ,Magnus W, Oberhettinger F ,et al. Higher Transcendental Functions[M]. New York, Toronto, London: McGraw-Hill Book Company ,1953.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部