期刊文献+

无线传感器网络中丢包扩散卡尔曼算法的改进 被引量:4

Improved diffusion Kalman algorithm with packet-dropping in wireless sensor networks
下载PDF
导出
摘要 针对无线传感器网络数据融合时的丢包问题,对传统扩散卡尔曼滤波算法进行改进,并探讨丢包问题的改善方案。丢包情况下,改进算法在传统算法增量更新时,从邻居节点集合中剔除有丢包的节点,在融合更新时,节点重新调整融合权值,以减小丢包对估计值的影响。仿真结果表明,在一定条件下,改进算法的平均误差偏置比传统算法小2~3dB。由于"领导"节点较普通节点对系统的估计值影响更大,所以,可以通过选择能量大的节点作为"领导"节点,或者加强对"领导"节点的维护来改善丢包问题。 In this paper,an improved diffusion Kalman filter algorithm in connection of the "packet-dropping" problem for data fusion in wireless sensor networks is proposed and an improved scheme is achieved.When packet-dropping exists,the nodes with packet-dropping from their neighbor nodes sets are excluded by the improved algorithm in order to reduce the bad effect of packet-dropping on estimated values.In profile of the data fusion,nodes are designed to readjust the fusion weights and to reduce the bad impacts of the packet-dropping on the estimated values.Simulation results show that the improved algorithm has a better performance than the traditional one.This mainly reflects on the lower average error bias under several certain circumstances.Besides,"leader" nodes turn to have greater effects on the estimated value of the system than general nodes.Therefore,the "packet-dropping" problem can be improved by choosing the nodes with enough energy as "leadership" or strengthening the maintenance of those "leader" nodes.
出处 《西安邮电大学学报》 2013年第4期9-12,17,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61271276) 陕西省自然科学基金资助项目(2010JQ80241) 陕西省教育厅自然科学研究基金资助项目(2010JK836)
关键词 分布式滤波 扩散卡尔曼算法 丢包率 传感器网络 distributed filtering diffusion Kalman algorithm packet-dropping rate wireless sensor networks
  • 相关文献

参考文献15

  • 1孙利民;李建中;陈渝.无线传感器网络[M]北京:清华大学出版社,201011-16.
  • 2Cattivelli F S,Sayed A H. Diffusion Strategies for Distributed Kalman Filtering and Smoothing[J].IEEE Transactions on Automatic Control,2010,(09):2069-2084.
  • 3Cattivelli F S,Lopes C G,Sayed A H. Diffusion strategies for distributed Kalman filtering:formulation and performance analysis[A].Santorini,Greece,2008.36-41.
  • 4王晓侃,卢光跃,包志强,白辉.一种新的分布式协作能量检测算法[J].电讯技术,2012,52(9):1480-1485. 被引量:5
  • 5白辉,卢光跃,王晓侃.非信任环境中一致卡尔曼滤波的数据融合算法[J].西安邮电学院学报,2012,17(5):10-14. 被引量:5
  • 6Ren W,Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies[J].IEEE Transactions on Automatic Control,2005,(05):655-661.doi:10.1109/TAC.2005.846556.
  • 7Olfati-Saber R,Murray R W. Consensus problems in networks of agent with switching topology and timedelays[J].IEEE Transactions on Automatic Control,2004,(09):1520-1533.
  • 8Xiao L,Boyd S,Lall S. A space-time diffusion scheme for peer-to-peer least-squares estimation[A].New York,NJ,USA:ACM,2006.168-176.
  • 9Olfati-Saber R. Distributed Kalman Filtering for Sensor Networks[A].New Orleans,LA,USA,2007.12-14.
  • 10Lopes C G,Sayed A H. Incremental Adaptive Strategies Over Distributed Networks[J].IEEE Transactions on Signal Processing,2007,(08):4064-4077.doi:10.1109/TSP.2007.896034.

二级参考文献32

  • 1Rao B S, Durrant-Whyte H F. Fully decentralised algorithm for multisensor Kalman filtering. IEE Proceedings D: Control Theory and Applications, 1991.138(5): 413-420.
  • 2Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
  • 3Fox V, Hightower J, Liao L, Schulz D, Borriello G. Bayesian filtering for location estimation. IEEE Pervasive Computing, 2003, 2(3): 24-33.
  • 4Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233.
  • 5Spanos D P, Olfati-Saber R, Murray R M. Dynamic consensus for mobile networks. In: Proceedings of the 16th IFAC World Congress. Pragae, Czech: IFAC, 2005. 1-6.
  • 6Spanos D P, Olfati-Saber R, Murray R M. Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Los Angeles, USA: IEEE, 2005. 133-139.
  • 7Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference. Seville, Spain: IEEE, 2005. 8179-8184.
  • 8Olfati-Saber R. Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, USA: IEEE, 2007. 5492-5498.
  • 9Stankovic S S, Stankovic M S, Stipanovic D M. Consensus based overlapping decentralized estimation with missing observations and communications faults. Automatica, 2009, 45(6): 1397-1406.
  • 10Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan M I, Sastry S S. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1464.

共引文献32

同被引文献25

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部