期刊文献+

一种基于云计算的网络流量分析系统结构 被引量:7

A network traffic analysis system architecture based on cloud computing
下载PDF
导出
摘要 基于云计算平台Hadoop提出一种新的分布式网络流量分析系统结构。在关键监测点附近部署小型本地云,采集的流量发送到本地云进行存储和分析,本地云规模可根据监测点流量大小按需配置;分析结果传输到协调节点,存入关系数据库供查询;协调节点调度分析任务在各本地云上运行。新结构具有统一的并行处理编程框架,且能减小大量数据传输对被监测网络性能的影响。在小型云平台上用实际流量数据验证用Map-Reduce程序对分组进行统计分析的性能,相对于顺序程序处理,执行速度可提高90%以上,表明用小型云实现快速海量流量分析的方案是有效的。 Based on the cloud computing platform Hadoop,a novel architecture for distributed network traffic analysis system is proposed.A small size cloud,called local cloud,is deployed near the selected pivotal network device,and traffic collected from the device are stored and analyzed in the cloud.The size of the cloud could adapt with the traffic volume of the monitored device.The analysis results are transferred to a coordinating node,which stores them into a relation database for querying.The coordinating node schedules analysis tasks to execute in local clouds.A system in this architecture has a unified parallel programming framework,and could alleviate the impacts of large scale data transmission on performance of the monitored network.Real packet traces are used to verify the performance of statistic analysis on small size cloud.The results show that comparing against sequential analysis program,the performance of Map-Reduce program is improved by more than 90%.Therefore,it is effective to analyze larger scale network traffic using a small size cloud.
作者 孙韩林
出处 《西安邮电大学学报》 2013年第4期75-79,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省教育厅自然科学研究基金资助项目(11JK1018)
关键词 网络流量分析 网络监控 云计算 HADOOP平台 Map-Reduce框架 network traffic analysis network monitoring cloud computing Hadoop Map-Reduce framework
  • 相关文献

参考文献12

  • 1苟娟迎,马力.网络流量分析方法综述[J].西安邮电学院学报,2010,15(4):20-23. 被引量:18
  • 2杨家海;吴建平;安常青.互联网络测量理论与应用[M]北京:人民邮电出版社,2009178-196.
  • 3Morariu C,Racz P,Stiller B. SCRIPT:A framework for scalable real-time IP flow record analysis[A].Piscataway,NJ:IEEE,2010.278-285.
  • 4高磊,杨家海,张辉,李福亮,张宾.基于Netflow的网络流量测量基础设施建设[J].广西大学学报(自然科学版),2011,36(A01):78-82. 被引量:4
  • 5Youngseok L,Wonchul K,Hyeongu S. An Internet traffic analysis method with MapReduce[A].Piscataway,NJ:IEEE,2010.357-361.
  • 6Deri L,Chou E,Cherian Z. Increasing data center network visibility with cisco NetFlow-Lite[A].Piscataway,NJ:IEEE,2011.1-6.
  • 7王博,陈莉君.Hadoop远程过程调用机制的分析和应用[J].西安邮电学院学报,2012,17(6):74-77. 被引量:10
  • 8Borthakur D. HDFS architecture guide[EB/OL].http://hadoop.apache.org/docs/r1.0.4/hdfs_design.html,2013.
  • 9Dean J,Ghemawat S. MapReduce:simplified data processing on large clusters[J].Communications of the ACM,2008,(01):107-113.doi:10.1145/1327452.1327492.
  • 10Apache. MapReduce tutorial[EB/OL].http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html,2013.

二级参考文献24

  • 1谭晓玲,许勇,梅成刚,刘兰.基于时间粒度的网络流量分析模型研究[J].微计算机信息,2005,21(06X):4-6. 被引量:9
  • 2崔小燕.Linux集群系统分析[J].西安邮电学院学报,2006,11(5):103-106. 被引量:13
  • 3冯海亮,陈涤,林青家,陈春晓.一种基于神经网络的网络流量组合预测模型[J].计算机应用,2006,26(9):2206-2208. 被引量:28
  • 4Barakat C, Thiran P, Iannaccone G, et al. Modeling Internet backbone traffic at the flow level[J]. IEEE Trans on Signal processing Special Issue on Networking, 2003, 51(8) :2111-2124.
  • 5Frost V S, Melamed B. Traffic Modeling For Telecommunications Networks[J ]. IEEE Communications Magazine, 1994,32(3) :70-81.
  • 6Adas A. Traffic Models in Broadband Networks [J ]. IEEE Communications Magazine, 1997,35(7) : 82-89.
  • 7Norms I. A storage model with self-similar input[J]. Queueing Systems, 1994, 16(3) :387-396.
  • 8Riesi RH,Cmuse M S,Rbeiro V J,et al. A Multifractal wavelet model with application to network traffic [ J ]. IEEE Transactions on Information Theory, 1999, 45 (3) : 992-1018.
  • 9MORARIU C. , KRAMIS T, STILLER B. DIPStorage : distributed storage of IP flow records [ C ]//16th IEEE Workshop on Local and Metropolitan Area Networks. Chij-Napoca, Transylvania ,2008.
  • 10MORARIU C, RACZ P, STILLER B, SCRIPT: A Framework for Scalable Real-time IP Flow Record Analysis [ C ]/! NOMS'10, Osaka, Japan:2010.

共引文献29

同被引文献49

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2胡炎,谢小荣,辛耀中.电力信息系统现有安全设计方法分析比较[J].电网技术,2006,30(4):36-42. 被引量:20
  • 3王春梅.基于数据仓库的数据挖掘技术[J].西安邮电学院学报,2006,11(5):99-102. 被引量:6
  • 4崔小燕.Linux集群系统分析[J].西安邮电学院学报,2006,11(5):103-106. 被引量:13
  • 5陈英.基于维基百科的命令实体消歧研究[D].北京:北京理工大学,2011:29-35.
  • 6Bunescu R, Pasea M. Using encyeloped c knowledge for named entity disambiguation[C]//Proceedings of the llth Conference of the European Chapter of the Association for Computational Linguistics (EACL- 06), 2006:9-16.
  • 7Dredze M, McNamee P, Rao D, et al. Entity disam- biguation for knowledge base population[C]//Proceed- ings of the 23rd International Conference on Computa- tional Linguistics, 2010:277-285.
  • 8Cueerzan S. Large-scale named entity disambiguation based on Wikipedia data[C]//Proceeding: of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Lan- guage Learning (EMNLP-CoNLL), 2007 : 708-716.
  • 9Fangtao Li, Zhicheng Zheng, Fan Bu, et al. THU QUANTA at TAC 2009 KBP and RTE track[C]// Text Analysis Conference (TAC), 2009:136-147.
  • 10Han Xianpei, Zhao Jun. Structural Semantic Related- ness: A knowledge-based method to named entity dis- ambiguation [C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguis- tics, 2010:50-59.

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部