期刊文献+

围网渔情预报中强影响因子的挖掘技术研究

Research on mining technique of high effect factors in purse seine fishery prediction
下载PDF
导出
摘要 针对传统围网渔业渔情预测方法的缺点,综合多种类型海洋环境因子,采用粗糙集理论中的属性约简方法,获得多种类型因子中的约简属性,即影响围网产量的强影响因子。该技术首先对渔情监测数据进行缺失值的填补,再利用可辨识矩阵进行属性约简,从而构建出强影响因子的核心属性集。该算法有效解决了渔情监测数据的稀疏性问题,提高了渔情预测的准确性。 Firstly, a new algorithm based on attribute frequency in the discernibility matrix is used to get the core-attribute of attribute reduction. Secondly, considering the effect of different kinds of marine environment factors, an effective prediction model is established to confirm the core-attribute to be the high effect factors of purse seine outputs. This method addresses the issue by automatically filling va- cant item of the fishery monitor data set, and then to take a attribute deduction using the discernibility matrix to get the core-attribute to be the high effect factors of purse seine. The experiment results show that the algorithm efficiently improves sparsity of date set , and promises to make prediction more accu- rately
出处 《计算机工程与科学》 CSCD 北大核心 2013年第8期163-167,共5页 Computer Engineering & Science
基金 江苏省海洋资源研究院科技开放基金资助项目(JSIMR11B12)
关键词 粗糙集理论 围网 数据挖掘 渔情预测 rough set theory purse seine data mining fishery prediction
  • 相关文献

参考文献2

二级参考文献14

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部