期刊文献+

基于特征选择技术的集成方法研究 被引量:2

Research on feature selection and its ensemble method
下载PDF
导出
摘要 随着计算机与网络技术的快速发展,大数据集的出现致使人们获取的信息量正在以前所未有的速度日益剧增,如何快速获取有用信息倍受人们关注。针对如何有效剔除冗余数据问题,运用具有良好泛化能力的支持向量机的特征选择和集成分类器新技术,在支持向量机分类的基础上,以特征选择和基于特征选择的集成学习方法为主要研究内容,以具有较高分类效果的RGS算法为基础,对多个成员分类器的集成进行深入研究,并提出了RGSE算法。最后,用实验表明了算法的正确性和有效性。 With the rapid development of computer and network technology, the emergences of large data sets make the amount of information people obtain increases at an unprecedented speed. How to ob- tain useful information quickly are becoming people's concerns. To solve the problem, we study on fea- ture selection and ensemble classifiers based on support vector machine which has good generalization a- bility. Using RGS algorithm that has higher classification results and the technique of ensemble classifi- ers, RGSE algorithm is proposed. Finally, experiments demonstrate the correctness of the algorithm.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第8期168-173,共6页 Computer Engineering & Science
基金 中国青年基金重点项目(2012QNA01)
关键词 特征选择 集成方法 支持向量机 遗传算法 RELIEFF算法 feature selection ensemble classifiers support vector machine genetic algorithm ReliefF algorithm
  • 相关文献

参考文献10

  • 1Suen c Y,Nadal C, Mai T A,et al. Recognition of totally un- constrained handwriting numerals based on the concept of multiple experts [C]//Proc of International Workshop on Frontiers in Handwriting Recognition, 1990:131-143.
  • 2Ho T. The random subspace method for construction deci- sion forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 (8) : 832-844.
  • 3Optiz D. Feature selection for ensembles [C]//Proc of Inter- national Conference on Artificial Intelligence, 1999 : 379-384.
  • 4Tsymbal M C. Search strategies for ensemble feature selec- tion in medical diagnostics [C]//Proc of the 16th IEEE Sym- posium, 2003 : 124-129.
  • 5Windeatt T. Diversity measures for multiple classifier system analysis and design[J ]. Information Fusion, 2005,6 (1) ; 21- 36.
  • 6Tsymbal A, Pechenizkiy M, Cunningham P. Diversity in search strategies for ensemble feature selection[J]. Information Fu- sion,2005,6(1) :83-98.
  • 7Fan M, Meng X F. The concept and technology of data min- ing[M]. Beijing: Machine Industry Press, 2007.
  • 8王世卿,曹彦.基于遗传算法和支持向量机的特征选择研究[J].计算机工程与设计,2010,31(18):4088-4092. 被引量:19
  • 9Caruana R,Munson A. Getting the most out of ensemble se- lection [C]//Proc of the 6th International Conference on Da- ta Mining, 2006:828-833.
  • 10Li M Q,Kou J S. The basic theory and application of genetic algorithm[M]. Beijing: Science Press, 2003.

二级参考文献7

  • 1卡内基梅隆大学.机器学习[M].北京:机械工业出版社,2007:179-193.
  • 2Liu H,Yu L.Toward integrating feature selection algorithms for classification and clustering[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(4):491-502.
  • 3Mao K Z.Feature subset selection for support vector machines through discriminative function pruning analysis[J].IEEE Transactions on Systems,Man and Cybernetics,2004,34(1):60-67.
  • 4Yu L,Liu H.Efficient feature selection via analysis of relevance and redundancy[J].Journal of Machine Learning Research,2004,46(5):1205-1224.
  • 5Cherkassky V,Ma Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.
  • 6范明,孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2007:195-196
  • 7王正群,侯艳平,邹军,马波.改进的特征选择算法[J].计算机工程与设计,2008,29(22):5814-5816. 被引量:2

共引文献18

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部