摘要
对异常工作风力机进行振动测试,获取振动测试信号,选取额定风速时采集的一段信号分别进行时频域分析、短时傅里叶变换分析、希尔伯特黄变换分析,提取故障特征信号。结果表明,短时傅里叶变换具有较好的时频分辨率,能够较好的提取故障特征信号,较为适合非线性、非平稳信号的分析;希尔伯特黄变换是一种很好的自适应信号处理方法,非常适合于非线性和非平稳信号的分析。希尔伯特黄变换对于风力机滚动轴承的故障诊断取得了很好的效果,准确提取了故障信号特征。对风力机故障诊断技术的发展具有较大的意义。
The vibration signals of wind turbines in abnormal operation were acquired through the vibration testing.The signals collected at the rated wind-speed were selected for time-frequency domain analysis,short-time Fourier transform(STFT) analysis and Hilbert-Huang transform(HHT) analysis.Then,the fault feature signals were extracted.The results show that the STFT has a good time-frequency identification rate,and can extract the fault feature signals well;while the HHT is a good method for adaptive signal processing,and very suitable for nonlinear and non-stationary signal analysis.The HHT is effective in fault diagnosis of rolling element bearings for wind turbines,and it has important significance for the development of fault diagnosis technique for wind turbines.
出处
《噪声与振动控制》
CSCD
2013年第4期219-222,共4页
Noise and Vibration Control
基金
新疆维吾尔自治区高等学校科研计划科学研究重点项目(XJEDU2009I02)
关键词
振动与波
故障诊断
希尔伯特黄变换
风力机
滚动轴承
vibration and wave
fault diagnosis
Hilbert-Huang transform
windmill
rolling bearing