期刊文献+

基于分段核函数的支持向量机及其应用 被引量:2

Support vector machine based on segmented kernel function and its application
下载PDF
导出
摘要 支持向量机兼顾训练误差和推广性能,已受到机器学习领域的高度重视,而核函数的性能是支持向量机研究中的关键问题。研究了几种常见核函数对支持向量机推广性能的影响,并利用全局核函数和局部核函数的性质,提出了一种新的分段核函数的支持向量机。数据集上的仿真结果表明,该核函数对应的支持向量机泛化能力优于传统核函数对应的支持向量机,具有较好的预测性能。 Considering both the training error and the generalization ability of support vector machine,it has been highly valued in the field of machine learning.The performance of kernel function is an important content in the study of support vector machine.The effect of several common kernel functions on generalization ability support vector machine is investigated.A new support vector machine based on piecewise kernel function is proposed according to properties of global and local kernel functions.The simulation results on data set show that the generalization ability of the support vector machine corresponding to kernel function is better than that of traditional kernel functions.It has a better predictive performance.
作者 李渝 吴增印
出处 《现代电子技术》 2013年第16期5-8,共4页 Modern Electronics Technique
基金 国家自然科学基金(61101127)
关键词 支持向量机 分段核函数 全局核 局部核 SVM segmented kernel function global kernel local kernel
  • 相关文献

参考文献9

  • 1袁小艳,刘爱伦.组合核函数支持向量机的研究与应用[M].上海:华东理工大学自动化研究所,2011.
  • 2丁子春.支持向量机中核函数研究[M].武汉:武汉理工大学,2008.
  • 3CHAPELLE Olivier, VAPNIK Vladimir, BOUSQUET Olivier, et al. Choosing multiple parameters for support machine [J]. Machine Learing, 2002, 46(1/3) : 131-159.
  • 4王国胜.核函数的性质及其构造方法[J].计算机科学,2006,33(6):172-174. 被引量:52
  • 5CHANG Chih-Chung, LIN Chih-Jen. LIBSVM: a library for support vector machines [EB/OL]. [2013- 03- 04]. http://www. csie.ntu.edu.tw/-cjlin/libsvm.
  • 6SMITS G F, JORDAAN E M. Improved SVM regression using mixtures of kernels [C]// Proceedings of the 2002 International Joint Conference on Neural Networks. Hawaii: IEEE, 2002: 2785-2790.
  • 7边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 8ZHANG Sheng, LIU Jian,TIAN Jin-wen. An SVM-based small target segmentationand clustering approach [C]// Proceedings of the Third International Conference on Machine Learning and Cybernetics. Shanghai: IEEE, 2004 : 3318-3323.
  • 9陈林,潘丰.基于量子PSO的SVM参数选择及其应用[J].自动化与仪表,2009,24(1):5-8. 被引量:8

二级参考文献18

  • 1冯兴杰,魏新,黄亚楼.基于支持向量回归的旅客吞吐量预测研究[J].计算机工程,2005,31(14):172-173. 被引量:17
  • 2杜润龙,须文波,孙俊.基于量子微粒群算法的发酵过程模型参数估计[J].计算机工程与设计,2007,28(10):2419-2421. 被引量:2
  • 3BURGES J C.A Tutorial on Support Vector Machines for Pattern Recognition[M]. Boston:Kluwer Academic Publishers,1999.
  • 4SUN Jun,FENG Bin,XU Wenbo. Particle swarm optimization with particles having quantum behavior [C]// Congress on Evolutionary Computation,2004(58) :40-43.
  • 5陈金环,王冠,王东云.粒子群算法及特性的研究[J].中原工学院学报,2007,18(4):13-15. 被引量:8
  • 6Cristianini N, Shawe-Taylor J, Kandola. On Kernel Target Alignment. In: Proceedings of the Neural Information Processing Systems, NIPS'01, MIT Press, 2002
  • 7Lin Hsuan-Tien, Lin Chih-Jen. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods.http: //www. csie. ntu. edu. tw/-cjlin/papers. html. 2003
  • 8Steinwart I. On the influence of the kernel on the consistency of support vector machines. The Journal of Machine Learning Research, 2002,2:67-93
  • 9Haussler D. Convolutional kernels on discrete structures: [technical report]. UCSC-CRL-99-10, Santa Cruz: Computer Science Department, University of California, 1999
  • 10Feller W. An introduction to probability theory and its applications. Vol 2. New York:Wiley, 1971

共引文献200

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部