期刊文献+

分配伪格上矩阵积和式的分解

The Decomposition of Matrix Permanent over Distributive Pseudolattices
下载PDF
导出
摘要 在分配伪格上,文章专题讨论和研究矩阵积和式的分解问题,得到了矩阵积和式若干的分解式和性质. The paper focuses on the discussion and research of the decomposition of Matrix Permanent Per(A) over distributive pseudolattices and presents several condition and properties of it.
作者 张国勇
出处 《太原师范学院学报(自然科学版)》 2013年第2期16-18,共3页 Journal of Taiyuan Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(2008J0186)
关键词 分配伪格 矩阵 积和式 分解 distributive pseudolattices matrix permanent decomposition
  • 相关文献

参考文献7

  • 1Han SC, Li H X. On nilpotent incline matrices[J]. Linear Algebra Appl. ,2005,406:201-217.
  • 2Han S C, Li H X. Invertible incline matrices and Cramers rule over inclines[J]. Linear Algebra Appl. ,2004,389:121-138.
  • 3Han S C, Li H X. The semigroup of incline Hall MatricesFJ]. Linear Algebra Appl. ,2004,390:183-196.
  • 4Han S C, Li H X. Indices and periods of incline matricesFJ]. Linear Algebra Appl. , 2004,387:143-165.
  • 5张国勇.分配伪格上积和式Per(A)=1的矩阵[J].福建师范大学学报(自然科学版),2009,25(1):16-18. 被引量:2
  • 6张国勇.分配伪格上矩阵积和式的不等式[J].数学的实践与认识,2010,40(20):193-198. 被引量:1
  • 7Zhang K L. Determinant theory for D01-1attiee matricesJ. Fuzzy Sets and Systems, 1994,62.-347-353.

二级参考文献14

  • 1Han S C, Li H X. Invertible incline matrices and Cramer's rule over inclines . Linear Algebra Appt, 2004 (389): 121--138.
  • 2Han S C, Li H X. Indices and periods of incline matrices[J]. Linear Algebra Appl, 2004 (387) : 143--165.
  • 3Zhang K L. Determinant theory for D01-lattice matrices [J]. Fuzzy Sets and Systems, 1994 (62) : 347--353.
  • 4Cho H H. Fuzzy matrices of permanent one [J]. Fuzzy Sets and Systems, 1993 (56). 291--296.
  • 5Zhang G Y. Invertible matrices over distributive pseudolattiees [J]. World Academic Union, 2006 (19): 242--245.
  • 6Ahn S $. Permanents over inclines and other semirings[J]. Pure Math Appl, 1997, 8(2-4): 147-154.
  • 7Cao Z Q, Kim K H, Roush F W. Incline Algebra and Applications[M]. New York: John Wiley, 1984.
  • 8Han S C, Li H X. On nilpotent incline matrices[J]. Linear Algebra Appl, 2005, 4(6): 201-217.
  • 9Han S C, Li H X. Invertible incline matrices and Cramer's rule over inclines[J]. Linear Algebra Appl, 2004, 389: 121-138.
  • 10Zhang K L. Determinant theory for D01-1attice matrices[J]. Fuzzy Sets and Systems, 1994(62): 347-353.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部