期刊文献+

保持算子+-乘积幂等性的映射 被引量:2

Mappings Preserving the Idempotency of +-Product Pooduct of Operators
下载PDF
导出
摘要 设H为复的无限维的完备的不定内积空间,B(H)表示H上所有有界线性算子构成的代数.令A是B(H)中到少包含单位I和一秩幂等元的非零数乘C*I1(H)的子集,且对任意的A∈A,Gcv{A,I}■A.如果对任意的A,B∈A,AB+为非零幂等元当且仅当Φ(A)Φ(B)+为非零幂等元,则称Φ为A上保持算子+-乘积幂等性的映射。A上保持算子+乘积幂等性映射的具体形式得到了完整的刻画.当H为Hilbert空间时,作为推论,给出了A上保持算子*乘积幂等性的映射的具体形式. Let H be an infinite dimensional complex completely indefinite inner product spaces,B(H) be the sets of all lincar operators on H. A be a subset of B(H),which containing at least all nonzero scalar multiples of rank-one indempotents and I, and Gev{A, I}∈A for any A ∈ A. We obtain a general form of a surjective unital mapping Φ on A,whieh preserve the idempoten- cy of t-product of operators in both directions,i, e:AB+ is a nonzero idempotent if and only if (A)Φ(B)+ is a nonzer idempotent for any A,B∈A. As corollaries,the maps preserving the idemp- otency of *-product of operators on A are completely classified when H is a Hillbert spaces.
出处 《太原师范学院学报(自然科学版)》 2013年第2期61-65,共5页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 不定内积空间 幂等性 算子+乘积 算子*乘积 indefinite inner product spaces idempotency t-product of operators *-prod-uct of perators
  • 相关文献

参考文献8

  • 1Li Fang,Ji Guoxing,Pang Yongfeng. Maps preserving the idempotency of products of operators[J]. Linear Algebra and its Aplication, 2007,426 : 40-50.
  • 2Tatjana Petek, Mappings preserving the idempotency of Jordan triple products of operator s, prepring[J]. Linear and Multilin ear Algebra,2010,58.903 925.
  • 3侯晋川,崔建莲.算子代数上线性映射引论[M].北京:现代数学丛书,科学出版社,2002.
  • 4Bresar M, Semrl P. On locally linearly dependent operators and derivations[,J]. Trans Amer Math Soe, 1999,351 : 1 257-1 275.
  • 5Meshulan R, Semal P. Locally linear dependent operators[,J]. Pacific J Nath, 2002,203:441-459.
  • 6Molnr L. Orthogonality preserving transformations on idndfinite inner product space[,J]. J. Funct. Anal. ,2002,194248-262.
  • 7Peter Semrl. Maps on idempotents[J]. Studia Math, 2005,169 : 21-44.
  • 8Huishuang Gao. Jordan-triple multiplicative surjective maps on (H) I-J]. J MAnal Appl, 2013,401:397-403.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部