期刊文献+

Analysis of ice slurry production by direct contact heat transfer of air and water solution 被引量:2

Analysis of ice slurry production by direct contact heat transfer of air and water solution
原文传递
导出
摘要 In this paper, a novel system using direct contact heat transfer between air and water solution was proposed to generate ice slurry. The heat transfer process and the system performance were studied; energy efficiency coefficients of 0.038, 0.053, and 0.064 were obtained using different solutions. An empirical relationship between the volumetric heat transfer coefficient U v and the main parameters was obtained by fitting the experimental data. The U v calculated from the empirical formula agreed with the experimental U v quite well with a relative error of less than 15%. Based on the empirical formula, a laboratory-scale direct contact ice slurry generator was then constructed, with practical application in mind. If the air flow rate is fixed at 200 m 3 /h, the ice production rate will be 0.091 kg/min. The experimental results also showed that the cold energy consumption of the air compressor accounted for more than half of the total amount. To improve the system energy efficiency coefficient, it is necessary to increase the air pipes insulation and the solution's thermal capacity, and also it is appropriate to utilize the free cold energy of liquefied natural gas (LNG). In this paper, a novel system using direct contact heat transfer between air and water solution was proposed to generate ice slurry. The heat transfer process and the system performance were studied; energy efficiency coefficients of 0.038, 0.053, and 0.064 were obtained using different solutions. An empirical relationship between the volumetric heat transfer coefficient Uv and the main parameters was obtained by fitting the experimental data. The Uv calculated from the empirical formula agreed with the experimental Uv quite well with a relative error of less than 15%. Based on the empirical formula, a laboratory-scale direct contact ice slurry generator was then constructed, with practical application in mind. If the air flow rate is fixed at 200 m3/h, the ice production rate will be 0.091 kg/min. The experimental results also showed that the cold energy consumption of the air compressor accounted for more than half of the total amount. To improve the system energy efficiency coefficient, it is necessary to increase the air pipes insulation and the solution's thermal capacity, and also it is appropriate to utilize the free cold energy of liquefied natural gas (LNG).
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第8期583-588,共6页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project (No. 51176164) supported by the National Natural Science Foundation of China
关键词 Ice slurry GENERATOR Air and water solution Direct contact Volumetric heat transfer coefficient Liquefied naturalgas (LNG) 直接接触传热 生产速率 空气管 冰浆 溶液 实验数据 效率系数
  • 相关文献

参考文献2

二级参考文献7

共引文献18

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部