期刊文献+

指数有界双参数C半群的逼近 被引量:7

Approximations for Exponentially Bounded Bi-Parameter C-Semigroups
下载PDF
导出
摘要 基于C半群的定义,引入指数有界的双参数C半群的概念,借助于单参数C半群与双参数C半群之间的关系,利用范数与极限的一些性质,考察了指数有界的双参数C半群的逼近问题.从而对Banach空间中单参数C半群逼近定理及双参数强连续算子半群逼近定理进行了推广,为相应的抽象Cauchy问题提供了解决方案. Based on the definition of C semigroups, a biparameter C semigroups with exponential boundedness is presented. By means of the relationships between one parameter Csemigroups and biparameter Csemigroups, with some properties about the norm and limit, some approximations are obtained for exponentially bounded biparameter Csemigroups, and then the approximation theorem of one parameter Csemigroups and strongly continuous biparameter semigroups on Banach space are generalized, and a kind of solution to its relative abstract Cauchy problems is thus provided.
作者 岳田 宋晓秋
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2013年第4期7-10,共4页 Journal of Natural Science of Hunan Normal University
基金 中央高校基本科研专项资金资助项目(2010LKSX08 2012LWB53)
关键词 指数有界 双参数C半群 指数公式 逼近定理 exponentially bounded bi-parameter C-semigroups exponential formula approximation theorem
  • 相关文献

参考文献11

  • 1HILLE E, PHILLIPS R S. Functional analysis and semigroups[ M]. New York: Am Math Soc Colloq Pub,1957.
  • 2PAZY A. Semigroups of linear operators and applications to partial differential equations [ M ]. New York: Springer-verlag, 1983.
  • 3PFEIFER D. Approximation-theoretic aspects of probabilistic representations for operator semigroups [ J ]. J Approx Theory, 1985,43 (3) :271-296.
  • 4ADRENT W. Vector-valued Laplace transforms and Cauchy problems [ J]. Isr J Math, 1987,59 (3) :327-352.
  • 5SHARIF A S, KHALIL R. On the generator of two parameter semigroups [ J ]. Appl Math Comput, 2004,156 (2) :403-414.
  • 6蔡亮,宋晓秋,禹晓红.双参数C_0半群的指数公式与预解式[J].徐州师范大学学报(自然科学版),2010,28(4):43-45. 被引量:5
  • 7禹晓红,宋晓秋,李玉霞,蔡亮.双参数C_0半群的收敛性问题[J].贵州大学学报(自然科学版),2011,28(3):4-6. 被引量:10
  • 8JANFADA M. On two-parameter regularized semigroups and the cauchy problem[ J]. Abstract Appl Anal, 2009,2009:1-15.
  • 9LI Y C, SHAW H Y. N-times integrated C-semigroups and the abstract cauchy problem[ J ]. Taiwan J Math, 1997,1 (1) :75-102.
  • 10陈文忠.C-无穷小生成元的表示式[J].厦门大学学报(自然科学版),1993,32(2):135-140. 被引量:22

二级参考文献27

  • 1张祥芝,宋晓秋,刘钧文.n次积分C-半群的收敛性[J].中国矿业大学学报,2006,35(3):423-426. 被引量:7
  • 2林燕,陆善镇.与强奇异Calderón-Zygmund算子相关的Toeplitz型算子[J].中国科学(A辑),2006,36(6):615-630. 被引量:10
  • 3秦喜梅.关于双参数C_0半群的一些结果[J].安徽工程科技学院学报(自然科学版),2006,21(4):66-68. 被引量:16
  • 4Hille E,Phillips R S.Functional analysis and semigroups[M].New York:Am Math Soc Colloq Public,1957.
  • 5Arora S C,Sharda S.On two parameter semigroup of operators[M] //Proc of a conference held in memory of U.N.Singh.New Delhi:Univ of Delhi,1990:147-153.
  • 6Sharif A S,Khalil R.On the generator of two-parameter semigroups[J].Appl Math & Comput,2004,156(2):403.
  • 7Pazy A.Semigroups of linear operators and applications to partial differential equations[M].New York:Springer-Verlag,1983.
  • 8Chen Chuang, Song Xiaoqiu, Li Huimin. The Reduction square root and perturbation for a class of strongly continuous families[ J ]. Acta Mathematica Sinica( English Edition ) ,2010,26 ( 10 ) : 1993 - 2002.
  • 9YOUNG S L. Covergence of C - semigroups [ J ]. Kangweon-Kyungki Math , 1998,1 ( 1 ) :9 - 15.
  • 10Arora S, Sharda S. On two parameter semigroup of operators[ A ]. Lecture notes in mathematics [ C ]//Proceeding of a Conference held in memory of U. N. Singh. New Delhi: University of Delhi, 1990: 147 - 153.

共引文献35

同被引文献56

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部