摘要
对于正整数k,设Tk(x)=(1+x)k+(1-x)k-2k.本文运用高等代数和初等数论知识证明了:(i)对于任何正整数n,都有T2(x)/Tn(x)和T3(x)/Tn(x);(ii)正整数n满足T5(x)/Tn(x)/和T7(x)/Tn(x)的充要条件分别是n≡±1(mod6)和n≡1(mod6).
For any positive integer k , let Tk(x) : (1 + x)^k + (1 - x)^k - 2^k . In this paper, by using some knownledge of higher algebra and elementary number theory, we prove that (i) T2(x)/Tn(x) and T3 (x)/Tn (x) for any positive integer n ; (ii) A positive integer n satisfies T5 (x)/Tn (x) or T7 (x)/Tn (x) if and only if n=±(mod 6) or n= 1(mod 6) respectively.
出处
《湛江师范学院学报》
2013年第3期49-52,共4页
Journal of Zhanjiang Normal College
基金
湛江师范学院第五届学生课外科研课题立项
关键词
一元多项式
整除性
充要条件
univariate polynomial
divisibility
necessary and sufficient condition