摘要
应用高分辨率遥感数据进行矿山环境监测是近几年来矿山监测工作的一个发展趋势,信息提取技术是遥感数据应用中的关键。传统的像元分类方法只考虑了光谱信息,信息提取量少,分类精度低,难以满足高分辨率数据信息的提取。本文以IKONOS影像为数据源,利用面向对象分类新技术,探讨该技术在矿山高分辨遥感数据中的应用。最后运用kappa系数比较评价面向对象分类方法与传统的像元分类方法。研究表明,面向对象分类法比基于像元分类法精度更高,效果更好,具有较好的应用前景。
The application of high resolution remote sensing data for environmental monitoring mine is a development trend in recent years of monitoring work.Information extraction technology is the key in the application of remote sensing data.The traditional pixel classification method just considers spectral information,so the quantity of information extraction is small and the classification accuracy is low,which is difficult to meet the high resolution data information extraction.This article takes the IKONOS as the data source,applying object-oriented classification technology for application of mine area information extraction based on remote sensing images.At last,the paper compares and evaluates the effect of object-oriented analysis and pixel information extraction methods using kappa coefficient.The results show that the precision of object-oriented classification is higher and better than the pixel-based classification with better application prospect.
出处
《测绘与空间地理信息》
2013年第8期61-63,共3页
Geomatics & Spatial Information Technology
基金
中国地质调查局"甘肃中东部重点成矿带与矿集区矿山开发多目标遥感调查与监测"地质调查项目(1212010785012)资助
关键词
面向对象
信息提取
kappa系数
矿山环境监测
object-oriented
information extraction
kappa coefficient
environmental monitoring mine