期刊文献+

Nagata-like theorems for almost Prfer v-multiplication domains

Nagata-like theorems for almost Prfer v-multiplication domains
原文传递
导出
摘要 Let D be an integral domain and X an indeterminate over D . We show that if S is an almost splitting set of an integral domain D , then D is an APVMD if and only if both DS and DN(S) are APVMDs. We also prove that if {Dα}α∈I is a collection of quotient rings of D such that D=∩α∈IDα has finite character (that is, each nonzero d∈D is a unit in almost all Dα) and each of Dα is an APVMD, then D is an APVMD. Using these results, we give several Nagata-like theorems for APVMDs. Let D be an integral domain and X an indeterminate over D . We show that if S is an almost splitting set of an integral domain D , then D is an APVMD if and only if both DS and DN(S) are APVMDs. We also prove that if {Dα}α∈I is a collection of quotient rings of D such that D=∩α∈IDα has finite character (that is, each nonzero d∈D is a unit in almost all Dα) and each of Dα is an APVMD, then D is an APVMD. Using these results, we give several Nagata-like theorems for APVMDs.
作者 LI Qing
出处 《Science China Mathematics》 SCIE 2013年第9期1773-1780,共8页 中国科学:数学(英文版)
基金 National Natural Science Foundation of China (Grant No. 11171240) Fundamental Research Funds for the Central Universities,Southwest University for Nationalities (Grant No. 11NZYQN24)
关键词 splitting set Nagata-like theorem almost Prüfer v-multiplication domain 定理 公关 传输 积分域 分裂 商环 非零 类似
  • 相关文献

参考文献20

  • 1Anderson D D. Star operations induced by overrings. Commun Algebra, 1988, 16:2535-2553.
  • 2Anderson D D, Anderson D F, Zafrullah M. Splitting the t-class group. J Pure Appl Algebra, 1991, 74:17-37.
  • 3Anderson D D, Anderson D F, Zafrullah M. Factorizaiton in integral domains, II. J Algebra, 1992, 152:78-92.
  • 4Anderson D D, Anderson D F, Zafrullah M. The ring D + XDs[X] and t-splitting sets. Arab J Sci Eng Sect C Theme Issues, 2001, 26:3-16.
  • 5Anderson D F, Chang G W. Weakly Krull and related domains of the form D + M, A + XB[X], and A + X2B[X]. Rocky Mountain J Math, 2006, 36:1-22.
  • 6Anderson D F, Chang G W. Almost splitting sets in integral domains, II. J Pure Appl Algebra, 2007, 208:351-359.
  • 7Anderson D F, Chang G W, Park J. D[X2,X3] over an integral domain D. In: Lecture Notes in Pure and Applied Mathematics, vol. 231. New York: Marcel Dekker, 2003, 1-14.
  • 8Anderson D D, Dumitrescu T, Zafrullah M. Almost splitting sets and AGCD-domains. Commun Algebra, 2004, 32: 147-158.
  • 9Anderson D D, Zafrullah M. Weakly factorial domains and groups of divisibility. Proc Amer Math Soc, 1990, 109: 907-913.
  • 10Anderson D D, Zafrullah M. Almost B6zout domains. J Algebra, 1991, 142:285-309.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部