摘要
This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nirenberg inequality and variational method, we prove that the system has at least two nontrivial solutions when the parameter λ belongs to a certain subset of R.
This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nirenberg inequality and variational method, we prove that the system has at least two nontrivial solutions when the parameter λ belongs to a certain subset of R.