期刊文献+

Prescribing curvature problem of Bakry-mery Ricci tensor

Prescribing curvature problem of Bakry-mery Ricci tensor
原文传递
导出
摘要 We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-mery Ricci tensor is a constant. We show its solvability on the manifold, provided that the initial Bakry-mery Ricci tensor belongs to a negative cone. Moveover, the Monge-Ampère type equation with respect to the Bakry-mery Ricci tensor is also considered. We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-mery Ricci tensor is a constant. We show its solvability on the manifold, provided that the initial Bakry-mery Ricci tensor belongs to a negative cone. Moveover, the Monge-Ampère type equation with respect to the Bakry-mery Ricci tensor is also considered.
作者 YUAN LiXia
出处 《Science China Mathematics》 SCIE 2013年第9期1935-1944,共10页 中国科学:数学(英文版)
关键词 Bakry-émery Ricci tensor k-curvature 张量 曲率 处方 市场变化 放大器 歧管
  • 相关文献

参考文献23

  • 1An C, Blachre S, Chafal D, et al. Sur les Ingalits de Sobolev logarithmiques. Panoramas et Syntheses 10. Paris: Soc Math de France, 2000.
  • 2Bakry D, lmery M. Diffusions Hypercontractives in Sminaire de probabilits. In: Lecture Notes in Mathematics, vol. 1123. New York: Springer, 1985, 177-206.
  • 3Bakry D, Qian Z. Volume comparison theorems without Jacobi fields in current trends in potential theory. Theta Set Adv Math, 2005, 4:115-122.
  • 4Brooks R. A construction of metrics of negative Ricci curvature. J Differ Geom, 1989, 29:85-94.
  • 5Caffarelli L A, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear secondorder elliptic equations, 3: nctions of eigenvalues of the Hessians. Acta Math, 1985, 155:261-301.
  • 6Chang A, Gursky M, Yang P. An equation of Monge-Amp@re type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann Math, 2002, 155:709 -787.
  • 7Evans L C. Classical solutions of fully nonlinear convex second-order elliptic equations. Comm Pure Appl Math, 1982, 35:333-363.
  • 8Gao L Z, Yau S T. The existence of negatively Ricci curved metrics on three-manifolds. Invent Math, 1986, 85:637-652.
  • 9Gursky M, Viaclovsky J. Fully nonlinear equations on Riemannian manifolds with negative curvature. Indiana Univ Math J, 2003, 52:399-419.
  • 10Krylov N V. Boundediv inhomogeneour elliptic andparubolic equations in a domain. Izv Akad Nauk SSSR, 1983, 47: 75 -108.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部