期刊文献+

Mg取代对LiBH_4(010)面结构和储氢性能的影响 被引量:2

Effects of Mg Substitution on Structure and Hydrogen Storage of LiBH_4 (010) Surface
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理,研究了Mg取代Li原子对LiBH4(010)面的晶体结构、H原子解离能及H原子迁移的影响.结果发现,Mg取代后B—H键长增大,更易于H原子的解离.氢空位的出现也使其附近H原子的解离能减小.电子结构计算结果表明,Mg取代Li原子后,减弱了B—H之间的共价作用.通过对氢原子在[BH4]单元之间扩散能垒的计算发现,Mg取代Li原子后,H原子的扩散能垒由4.84 eV降为3.01 eV,表明H原子在体相内更容易迁移. The geometry, electronic structure, dehydrogenation energy and hydrogen atom migration on the clean and Mg doped LiBH4(010) surfaces were studied with first-principles calculations based on density functional theory(DFT). The lengths of B-H bond increase, and H atoms are easy to dissociate. Based on the H1 vacancy, we found that the presence of H vacancy is helpful to the formation of other kinds of H vacancy. Electronic structure reveals that the B-H bonds are weakened. By calculating the diffusion pathway of H atom from one [BH4] to the nearby [BH4] on the clean and Mg doped LiBH4(010) surfaces, we find that the migration barrier energy comes down from 4.03 eV to 3.09 eV. This indicates that the H atoms are easier to diffuse on the Mg doped LiBH4(010) surface.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第8期1929-1935,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21171047 21102033) 河北省自然科学基金(批准号:B2011205058) 河北省教育厅基金(批准号:ZD2010126 ZH2012106)资助
关键词 LiBH4 储氢 脱氢 扩散 第一性原理 LiBH4 Hydrogen storage Dehydrogenation Diffusion First-principle calculation
  • 相关文献

参考文献34

  • 1Sehlapbaeh L. , Ztittel A. , Nature, 2001, 414,353-358.
  • 2Orimo S. I. , Nakamori Y. , Eliseo J. R. , Zttttel A. , Jensen C. M. , Chem. Rev. , Mauron P. , Buehter F. , Friedriehs O. , Remhof A. , Bielmann M. , Zwieky C. N. 906--910.
  • 3Au M. , Jurgensen A. , J. Phys. Chem. B, 2006, 110( 13 ) , 7062-7067.
  • 4MaoJ. F., WuZ., ChenT. J., WengB. C., XuN. X., HuangT. S., GuoZ. X. B. , J. Phys. Chem. C, 2007, 111(33), 12495-12498 2007, 107, 4111--4132.
  • 5Ztittel A. , J. Phys. Chem. B, 7.,008, 112(3).
  • 6P. , Liu H. K. , Grant D. M. , Walker G. S. , Yu Orimo S. I. , Nakamori Y. , Kitahara G. , Miwa K. , Ohba N. , Towata S. , ZUttel A. , J. Alloy. Comp. , 2005, 404-406,427--430.
  • 7Yu X. B. , Grant D. M. , Walker G. S. , J. Phys. Chem. C, 2009, 113(41), 17945-17949.
  • 8Pinkerton F. E., Meyer M. S., Meisner G. P., Balogh M. P., Vajo J. J., J. Phys. Chem. C, 2007, 111(35), 12881-12885.
  • 9Yan Y. , Li H. W. , Maekawa H. , Miwa K. , Towata S. I. , Orimo S. I. , J. Phys. Chem. C, 2011, 115(39), 19419-19423.
  • 10Zeng L. , Miyaoka H. , Iehikawa T. , Kojima Y. , J. Phys. Chem. C, 2010, 114(30), 13132-13135.

二级参考文献37

  • 1Holtz R. L., Imam M. A.. J. Mater. Sei. [J], 1997, 32:2267-2274.
  • 2Liu Y. , Li Q. , Lin G. W. , Chou K. C. , Xu K. D.. J. Alloys Comp. [J], 2009, 468(1/2) : 455-461.
  • 3Matsuura M., Sudoh H., Ohnuma T.. J. Metastable Nanocryst. Mater. [J], 2004, 20/21:343-348.
  • 4Tian Q. F., Zhang Y., Sun L. X., Xu F., Tan Z. C., Yuan H. T., Zhang T.. J. Power Sources[J], 2006, 158:1463-1471.
  • 5Kalisvaart W. P. , Harrower C. T. , Haagsma J. , Zahiri B. , Luber E. J. , Ophus C. , Poirier E. , Fritzsche H. , Mitlin D.. Int. J. Hydrogen Energy[J] , 2010, 35 : 2091-2103.
  • 6Fan C. , Ju X. , Wan C. B.. Int. J. Hydrogen Energy[J], 2010, 35:8044-8048.
  • 7Souza E. C. , Ticianelli E. A.. Int. J. Hydrogen Energy[J] , 2007, 32:4917-4924.
  • 8ZhangY. H., HanX. Y., LiB. W., RenH. P., DongX. P., WangX. L.. J. AlloysCompd.[J],2008,450:208-214.
  • 9Tanaka K. , Miwa T. , Sasaki K. , Kuroda K.. J. Alloys Compd. [J], 2009, 478:308-316.
  • 10ZhangY. H., ZhaoD. L., GuoS. H., QiY., WuZ. W., WangX. L.. J. AlloysCompd.[J], 2009, 476:457-461.

共引文献2

同被引文献23

  • 1Ztittel A. , Mater. Today, 2003, 6(9), 24-33.
  • 2Ztittel A. , Rentsch S. , Fischer P. , Wenger P. , Sudan P. , Mauron P. , Emmenegger C. , J. Alloys Compd. , 2003, 356/357, 515- 520.
  • 3Manron P. , Buchter F. , Friedriehs O. , Remhof A. , Bielmann M. , Zwieky C. N. , Ztittel A. , J. Phys. Chem. B, 2008, 112 ( 3 ), 906-910.
  • 4Fang Z. Z. , Kang X. D. , Luo J. H. , Wang P. , Li H. W. , Orimo S. , J. Phys. Chem. C, 2010, 114(51), 22736-22741.
  • 5Cai W. T. , Wang H. , Jiao L. F. , Wang Y. J. , Zhu M. , Int. J. Hydrogen Energy, 2013, 38(8), 3304-3312.
  • 6Guo L. J. , Jiao L. F. , Li L. , Wang Q. H. , Liu G. , Du H. M. , Wu Q. , Du J. , Yang J. Q. , Yan C. , Wang Y. J. , Yuan H. T. , Int. J. Hydrogen Energy, 2013, 38(1) , 162-168.
  • 7Jin S. A. , Lee Y. S. , Shim J. H. , Cho Y. W. , J. Phys. Chem. C, 2008, 112(25) , 9520-9524.
  • 8Vajo J. J., Skeith S. L., Mertens F., J. Phys. Chem. B, 2005, 109(9), 3719-3122.
  • 9Nakamori Y. , Li H. W. , Kikuchi K. , Aoki M. , Miwa K. , Towata S. , Ofimo S. , J. Alloys Compd. , 2007, 446/447,296-300.
  • 10Au M. , Jurgensen A. R. , Speneer W. A. , Anton D. L. , Pinkerton F. E. , Hwang S. J. , Kim C. , Bowman R. C. , J. Phys. Chem. C, 20118, 112(47), 18661-18671.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部