期刊文献+

多流形判别分析在特征提取中的应用研究

Research and Application of Feature Extraction with Discriminative Multiple Manifold
下载PDF
导出
摘要 为了更好地提高人脸识别率及其识别效率,提出了一种基于多流形判别分析(MMDA)的图像特征提取方法。在MMDA方法中,为了寻求能够同时最大化类间散布矩阵和最小化类内散布矩阵的判别矩阵,类间、类内分布图分别被用来描述类间和类内的分离性,类内图可以表示子流形的信息,而类间图可以代表多流形的信息,从而更好地实现分类。在ORL及FERET人脸数据库上进行实验,结果表明了MMDA方法在特征提取中的有效性。 To improve the face recognition accuracy and efficiency, a novel feature extraction method with discriminative analysis based multi-manifold (MMDA) is proposed in this paper. Distribution graph of intra-class and inter-class is described as the separation of intra-class and inter-class, respectively,aiming to find the discriminative metrix that maximize inter distribution and minimize the intra distribution. Graph of intra-class represents the sub-manifold, and graph of inter-class represents the multi-manifold so that it can separate classes better. Experiments on ORL and FERET show the efficiency of MMDA in feature extraction.
作者 周天绮
出处 《电视技术》 北大核心 2013年第15期37-40,51,共5页 Video Engineering
关键词 人脸识别 特征提取 多流形判别 子空间学习 face recognition feature extraction discriminative multiple manifold subspace learning
  • 相关文献

参考文献10

  • 1ZHANG Z, WANG J, ZHA H. Adaptive manifold learning [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2012, 34 ( 1 ): 131-137.
  • 2TENENBAUM J B, SILVA V D,LANGFORD J C. A global geometric frmnework for nonlinear dimensionality reduction [J]. Science, 200(/ (290) :2319-2323.
  • 3XIE Z, LIU G, FANG Z. Face recognition based on combination of human perception and local binary pattern[ J ]. Lecture Notes in Computer Sci- ence,2012 ( 7202 ) :365 -373.
  • 4HE X,YAN S,HU Y,et al. Face recognition using laplacianfaees[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,2005,27 ( 3 ) : 328-340.
  • 5YAN S,LIU J,TANG X,et al. A parameter-free framework for general supervised subspace learning [ J ]. IEEE Trans. Information Forensics and Security,2007,2( I ) :69-76.
  • 6CONNOLLY J F, GRANGER E, SABOURIN R. An adaptive classifica- tion system for video-based face recognition [ J ]. Information Sciences, 2012,192( 1 ) :50-70.
  • 7HAFIZ F,SHAFIE A A, MUSTAPHA Y M. Face recognition from single sample per person by learning of generic discriminant vectors[J], lh'oce-.dia Engineering,2012(45 ) :465--472.
  • 8LI B,HUANG D S,WANG C,et al. Feature extraction using constrained maximum variance mapping [ J ]. Pattern Recognition, 2008,41 ( 11 ) : 3287-3294.
  • 9WANG H,CHE S,HU Z,et al. Locality-preserved maximum information projection[J]. IEEE Trans. Neural Networks,2008,19(4):571-585.
  • 10WANG R,SHAN S,CHEN X,et al. Manifold - manifold distance and its application to face recognition with image sets[J]. IEEE Trans. Pat- tern Analysis and Machine Intelligence,2012,21 (10) :4466-4479.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部