期刊文献+

基本变量区域重要性测度及其稀疏网格解 被引量:3

REGIONAL IMPORTANCE MEASURE OF THE BASIC VARIABLE AND ITS SPARSE GRID SOLUTION
下载PDF
导出
摘要 为了提高现有基本变量对样本均值贡献的区域重要性测度指标的稳定性和收敛性,提出了一个新的衡量基本变量内部各个区域对输出均值影响的重要性测度指标.并将其进一步扩展提出了一个衡量基本变量内部各个区域对输出总方差分解式中一阶方差影响的区域重要性测度指标.分析了所提指标的性质,并探讨了它们与现有基本变量对样本均值贡献区域重要性测度指标和对样本方差贡献的区域重要性测度指标之间的关系.另外,针对所提指标的特点,还建立了其求解高效的稀疏网格积分法.算例结果表明,所提新的基本变量对输出均值贡献的区域重要性测度指标不仅继承了现有指标的优点,而且比现有指标具有更高的收敛性和稳定性.所提基本变量对一阶方差贡献的区域重要性指标能够在基本变量对样本方差贡献区域重要性测度的基础上,进一步提供基本变量内部各个区域对总方差的一阶分量的影响信息.而所建稀疏网格积分法可以在保证计算精度的同时大幅度提高基本变量区域重要性分析的效率. To improve the stability and convergence of the existing contribution to sample mean(CSM) regional importance measure(RIM),a new RIM is proposed to estimate the contribution to the mean of the model output by the different regions of basic variable,and it is named as improved contribution to sample mean(ICSM).An extended version of the ICSM,which is named as contribution to first order variance(CFOV),is developed to analyze the effect of the different regions of the basic variable on its corresponding first order variance in the variance decomposition.The properties of the two proposed RIMs are analyzed and their relationships with the existing CSM and contribution to sample variance(CSV) RIM are derived.Furthermore,based on the characteristics of the proposed RIMs,their highly effcient sparse grid integration(SGI) solutions are also established.Several numerical and engineering examples show that the newly defined ICSM can act as effectively as the CSM,but the convergence and stability of ICSM is better than those of CSM.The proposed CFOV can provide more detailed information than the existing CSV,which can effectively instruct the engineer on how to achieve a targeted reduction of the main effect of each basic variable.The established SGI-based method can improve the effciency of the regional importance analysis considerably in case of acceptable accuracy.
出处 《力学学报》 EI CSCD 北大核心 2013年第4期568-579,共12页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(51175425) 航空基金(2011ZA53015) 西北工业大学博士论文创新基金(CX201205) 教育部学术新人奖 西北工业大学顶尖博士研究生奖励基金(DJ201301)资助项目~~
关键词 基本变量 区域重要性 条件均值 一阶方差 主贡献 稀疏网格积分 basic variable regional importance conditional mean first order variance main effect sparse grid integration
  • 相关文献

参考文献20

  • 1Satelli A. Sensitivity analysis for importance assessment. Risk Anal- ysis, 2002, 22(3): 579-590.
  • 2Helton JC, Davis FJ. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineer- ing & System Safety, 2003, 81:23-69.
  • 3Helton JC, Davis FJ. Sampling-based methods. In: Saltelli A, Chan K, Scott EM, eds. Sensitivity Analysis. New York: Wiley, 2000, 101-153.
  • 4Saltelli A, Marivoet J. Non-parametric statistics in sensitivity analy- sis for model output: a comparison of selected techniques. Reliabil- ity Engineering & System Safety, 1990, 28:229-253.
  • 5Sobol IM. Sensitivity analysis for non-linear mathematical models. Mathematical Modelling & Computer Experiment, 1993, 1: 407- 414.
  • 6(in Russian) Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Com- puters in Simulation, 2001, 55(1): 221-280.
  • 7李璐祎,吕震宙,李维.一种新的基本随机变量重要性测度指标体系[J].航空学报,2012,33(7):1255-1264. 被引量:5
  • 8CastiUo E, Minguez R, Castillo C. Sensitivity analysis in optimiza- tion and reliability problems. Reliability Engineering & System Safety, 2008, 93(12): 1788-1800.
  • 9Liu HB, Chen W, Sudjianto A. Relative entropy based method for probabilistic sensitivity analysis in engineering design. Journal of Mechanical Design, 2006, 128(3): 326-333.
  • 10Borgonovo E. A new uncertainty importance measure. Reliability Engineering & System Safety, 2007, 92(6): 771-784.

二级参考文献18

  • 1CUI LiJie,Lü ZhenZhou & ZHAO XinPan School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China(Technological Sciences),2010,53(4):1138-1145. 被引量:43
  • 2Satelli A. Sensitivity analysis for importance assessment. Risk Analysis, 2002, 22(3): 579-590.
  • 3Helton J C, Davis F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex sys- tems. Reliability Engineering and System Safety, 2003, 81(1) : 23-69.
  • 4Helton J C, Davis F J. Sampling-based methods. Saltelli A, Chan K, Scott E M. Sensitivity Analysis. New York: Wiley, 2000: 101-153.
  • 5Saltelli A, Marivoet J. Non-parametric statistics in sensi- tivity analysis for model output: a comparison of selected techniques. Reliability Engineering and System Safety, 1990, 28(2): 229-253.
  • 6Sobol I M. Global sensitivity indices for nonlinear mathe- matical models and their Monte Carlo estimates. Mathe matics and Computers in Simulation, 2001, 55(1-3) : 271- 280.
  • 7Iman R L, Hora S C. A robust measure of uncertainty im portance for use in fault tree system analysis. Risk Analy- sis, 1990, 10(3): 401-406.
  • 8Xu C, Gertner G. Uncertainty and sensitivity analysis for models with correlated parameters. Reliability Engineer- ing and System Safety, 2008, 93(6): 1563-1573.
  • 9Xu C, Gertner G. Extending a global sensitivity analysis technique to models with correlated parameters. Computa- tional Statistics : Data Analysis, 2007, 51 (12) : 5579- 5590.
  • 10Chun M H, Han S J, Tak N I. An uncertainty importance measure using a distance metric for the change in a cumu- lative distribution function. Reliability Engineering and System Safety, 2000, 70(3): 313-321.

共引文献6

同被引文献44

  • 1Hasofer A M. Modern sensitivity analysis of the CESARE-Risk computer fire model[J]. Fire safety journal, 2009, 44(3): 330-338.
  • 2Helton J C, Johson J D, Sallaberry C J, Storlie C B. Survey of sampling-based methods for uncertainty and sensitivity analysis[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1175-1209.
  • 3Saltelli A, Marivoet J. Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques[J]. Reliability Engineering & System Safety, 1990, 28(2): 229-253.
  • 4Iman R L, Hora S C. A robust measure of uncertainty importance for use in fault tree system analysis[J]. Risk Analysis, 1990, 10(3): 401-406.
  • 5Sobol’ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280.
  • 6Borgonovo E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6): 771-784.
  • 7Liu H B, Chen W, Sudjianto A. Relative entropy based method for probabilistic sensitivity analysis in engineering design[J]. Journal of Mechanical Design, 2006, 128(2): 326-336.
  • 8Ge Q, Ciuffo B, Menendez M. Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs[J]. Reliability Engineering & System Safety, 2015, 134: 334-344.
  • 9Blatman G, Sudret B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2010, 95(11): 1216-1229.
  • 10Timoshenko S. Vibration Problem in Engineering[M]. New York: D.VAN NOSTRAND COMPANY, INC, 1937.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部