期刊文献+

静止空气中重频脉冲火花放电等离子体的气动激励特性 被引量:2

Characteristics of Pulse Recurrence Frequency Spark Discharge Plasma Aerodynamic Excitation in Quiescent Air
下载PDF
导出
摘要 不同的状况下的重频脉冲(PRF)火花放电等离子体气动激励特性并不相同。为此,采用重频脉冲电源和激励器在静止空气中产生火花放电等离子体气动激励,研究了其激励特性。实验结果表明:由于重复脉冲火花放电存在快速加热,因此会瞬间产生很大的温度升和气压升,进而诱导产生冲击波;冲击波在流场中以声速传播,随后强度逐渐减弱,一定时间后衰减为弱扰动。保持脉冲重复频率不变,当激励电压绝对值增大时,注入流场的单脉冲能量和冲击波波速都随之增大。而保持激励电压不变,增大脉冲重复频率时,注入流场的单脉冲能量和冲击波波速基本不变,同时由于放电周期变短,因此上一个放电周期产生的弱扰动在下一次放电时仍然存在。 The aerodynamic excitation by pulse recurrence frequency(PRF) spark discharge plasma performs diversely under different conditions.For investigating this variation,we produced plasma aerodynamic excitation in quiescent air by using a PRF power supply and an actuator,and studied its excitation characteristics.Test results show that,the rapid heating generated by PRF spark discharge results in rapid rises of temperature and pressure,which will induce shock waves.The shock wave spreads abroad at the speed of sound at first,and its strength gets weaker in the spreading process before it finally attenuates into weak disturbance in a certain period.When the pulse repetitive frequency is fixed,the rise of excitation voltage will lead to both increases in the single pulsed energy injected into the flow field and the velocity of shock wave.Whereas,with a fixed excitation voltage,the rise of pulse repetitive frequency hardly affects the injected energy and shock wave speed;however,since the cycle becomes shorter,in a discharge cycle there is the weak disturbance attenuation of the last discharge cycle.
出处 《高电压技术》 EI CAS CSCD 北大核心 2013年第7期1563-1568,共6页 High Voltage Engineering
基金 国家自然科学基金(51276197 51007095)~~
关键词 等离子体流动控制 重频脉冲火花放电 气动激励 激励电压 激励频率 冲击波 高速纹影 plasma flow control pulse recurrence frequency spark discharge aerodynamic excitation excitation voltage excitation frequency shock wave high-speed schlieren images
  • 相关文献

参考文献17

二级参考文献299

共引文献199

同被引文献19

  • 1李应红,吴云,宋慧敏,等.等离子体流动控制的研究进展与机理探讨[C]//中国航空学会动力专业分会.中国航空学会第六届动力年会论文集.北京:中国航空学会动力专业分会,2006:790-799.
  • 2Roth J R. Aerodynamic flow acceleration using paraelectric and peris- taltic electrohydrodynamic effects of a One Atmosphere Uniform Glow Discharge Plasma[J]. Physics of Plasmas, 2003, 10(5): 2117-2126.
  • 3Patel M P, Ng T T, Vasudevan S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[R]. Reno, USA: AIAA, 2006: 3495.
  • 4Wu Y, Li Y H, Zhu J Q, et al. Control of the comer separation in a compressor cascade by steady and unsteady plasma aerodynamic actu- ation[J]. Experiments in Fluids, 2010, 48(6): 1015-1023.
  • 5Moreau E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636.
  • 6Corke T C, Post M L, Orlov D M. SDBD plasma actuator enhanced aerodynamics: concepts, optimization and applications[J]. Progress in Aerospace Sciences, 2007, 43(7/8): 193-217.
  • 7Forte M, Moreau E, Touchard G, et al. Optimization of a dielectric barrier discharge actuator[R]. Reno, USA: AIAA, 2006: 2863.
  • 8Leonov S, Bityurin V, Kolesnichenko Y. Dynamic of a single-electrode HF filament in supersonic airflow[R]. Reno, USA: AIAA, 2001: 0493.
  • 9Klimov A, Bitiurin V, Moralev I, et al. Surface HF plasma aerody- namic actuator[R]. Reno, USA: AIAA 2008-1411, 2008.
  • 10Bityurin V, Boeharov A, Klimov A, et al. Surface HF plasma actuator in airflow[R]. Reno, USA: AIAA 2009-4073, 2009.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部