期刊文献+

10kW级氢电弧加热发动机非平衡等离子体流动过程的数值模拟 被引量:3

Numerical Simulation of Nonequilibrium Plasma Flow in 10 kW Hydrogen Arcjets
下载PDF
导出
摘要 为对10kW级氢电弧加热发动机中的流动与传热过程进行热力学及化学非平衡数值模拟研究,采用的数学物理模型中引入重粒子和电子能量方程考察发动机喷管内等离子体流动的热力学非平衡特性;引入氢原子、氢离子组分方程,结合总体连续方程和适当的化学反应,考察发动机喷管内等离子体流动的化学非平衡特性;数值计算所需的热力学和输运性质在求解过程中按照当地条件参数计算;控制方程组采用基于Roe格式的数值方法进行离散求解。计算获得的发动机性能参数与文献报道结果相比合理符合。数值模拟结果表明,在发动机喷管内壁面,电子和重粒子的温度差远大于沿发动机轴线的二者之差,说明在发动机内壁面附近电子和重粒子偏离热平衡状况比较明显。通过对各种氢组分在发动机内分布及演化过程分析表明,在发动机出口等离子体流动处于化学非平衡状态。 A thermal and chemical nonequilibrium modeling study is performed to investigate the plasma flow and heat transfer processes in 10 kW arcjets.In this modeling,the heavy particle and electron energy equations are introduced to examine the thermal nonequilibrium characteristics,while the equations of hydrogen atom and ion species equations combined with the a global continuity equation and the suitable chemical reactions,are introduced to examine the chemical nonequilibrium characteristics of plasma flow within the arcjet nozzle.The transport properties used in this paper are recalculated according to the conditions at each point in the plasma.The Roe scheme is employed to solve the governing equations.The predicted arcjet performance agrees well with the referred experimental results.The modeling results show that the differences between the temperatures of electron and heavy particles temperatures along the interior surface of thruster nozzle are significantly larger than those along the axis of thruster,which means that there is the thermal nonequilibrium in the regions near the interior wall of nozzle.Furthermore,based on the analysis of computed hydrogen species profiles and their evolutions within the arcjet thruster,it is found that deviations from chemical equilibrium occurs downstream of the thruster nozzle.
出处 《高电压技术》 EI CAS CSCD 北大核心 2013年第7期1614-1620,共7页 High Voltage Engineering
基金 国家自然科学基金(11072020 50836007 11275021)~~
关键词 等离子体 氢电弧加热发动机 双温度 热力学 输运性质 化学非平衡 解离 plasma hydrogen arcjet two-temperature thermodynamic transport properties chemical nonequilibrium dissociation
  • 相关文献

参考文献23

  • 1Martinez Sanchez M, Miller S A. Arcjet modeling: status and prospects[J]. Journal of Propulsion and Power, 1996, 12(6): 1035-1043.
  • 2Butler G W, King D Q. Single and two fluid simulations of arcjet performance[C]///28th AIAA /SAE/ASME/ASEE Joint Propulsion Conference and Exhibit. Nashville, TN: AIAA, 1992: 1-10.
  • 3Butler G W, Boyd I D, Cappelli M A. Non-equilibrium flow phenomena in low power hydrogen arcjets [C] // 31st AIAA/ ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit. San Diego, CA:AIAA 1995: 1-19.
  • 4Wang H X, Wei F Z, Murphy A B, etal. Numerical investiga- :ion of the plasma flow through the constrictor of arc-heated thrusters[J]. Journal of Physics D: Applied Physics, 2012, 45 (23), 235202.
  • 5Wang H X, Geng J Y, Chen X, et al. Modeling study on the flow, heat transfer and energy conversion characteristics of low- power arc-heated hydrogen/nitrogen thrusters [J].Plasma 2hemistry and Plasma Processing, 2010, 30(6): 707-731.
  • 6王海兴,陈熙,潘文霞,A.B.MURPHY,耿金越,贾少霞.Modelling Study to Compare the Flow and Heat Transfer Characteristics of Low-Power Hydrogen,Nitrogen and Argon Arc-Heated Thrusters[J].Plasma Science and Technology,2010,12(6):692-701. 被引量:5
  • 7Rat V, Murphy A B, Aubreton J, etal. Treatment of non-equi- librium phenomena in thermal plasma flows [J]. Journal of Physics D; Applied Physics, 2008, 41(18):183001.
  • 8Wang H X, Chen S Q, Chen X. Thermodynamic and transport properties of two-temperature lithium plasmas[J]. Journal of Physics D: Applied Physics, 2012, 45(16): 165202.
  • 9王海兴,孙素蓉,陈士强.双温度氦等离子体输运性质计算[J].物理学报,2012,61(19):317-323. 被引量:18
  • 10CHEN Shi-Qiang,WANG Hai-Xing.Transport Properties of Lithium Plasma[J].Chinese Physics Letters,2012,29(2):138-140. 被引量:1

二级参考文献43

  • 1John R R, Bennett S, Connors J F. 1963, AIAA Journal, 1:2517.
  • 2Todd J P, Sheets R E. 1965, AIAA Journal, 3:122.
  • 3Lichon P G, Sankovic J M. 1996, J. Propulsion and Power, 12:1018.
  • 4Sanchez M M, Miller S A. 1996, J. Propulsion and Power, 12:1035.
  • 5Cappelli M A and Storm P V. 1996, J. Propulsion and Power, 12:1070.
  • 6Auweter-Kurtz M, Glocker B, Golz T, et al. 1996, J. Propulsion and Power, 12:1077.
  • 7Zhang F Y, Fujiwara T, and Komurasaki K. 2001, Applied Optics, 40:957.
  • 8Glocker B, Auweter-Kurtz M, Goelz T M, et al. 1990, Medium power arcjet thruster experiments. Presented at the 21st Int. Electric Propulsion Conf. (Orlando, USA, 1990). AIAA Paper No. 90-2531, America Institute of Aeronautics and Astronautics, Virginia, USA.
  • 9Rhodes R P, Keefer D. 1990, Numerical modeling of an arcjet thruster. Presented at the 21st Int. Electric Propulsion Conf. (Orlando, USA, 1990) AIAA Paper No. 90-2614, America Institute of Aeronautics and Astronautics, Virginia, USA.
  • 10Butler C W, King D Q. 1992, Single and two-fluid simulations of arcjet performance. Presented at the 28th Joint Propulsion Conf. and Exhibit. (Nashville, USA, 1992) AIAA Paper No. 92-3104, America Institute of Aeronautics and Astronautics, Virginia, USA.

共引文献20

同被引文献32

  • 1White A D. New hollow cathode glow discharge[J]. Journal of Applied Physics, 1959, 30(5): 711-719.
  • 2Schoenbach K H, EI-Habachi A, Shi W, et al. High-pressure hollow cathode discharges[J]. Plasma Sources Science and Technology, 1997, 6(4): 468-477.
  • 3Frame W, Wheeler D J, de Temple T A, et al. Microdiscbarge devices fabricated in silicon[J]. Applied Physics Letters, 1997, 71(9): 1165-1167.
  • 4Schoenbach K H, Verhappen R, Tessnow T, et aL Microhollow ca- thode discharges[J]. Applied Physics Letters, 1996, 68(1): 13-15.
  • 5Aubert X, Bauville G, Guillon J, et al. Analysis of the self-pulsing operating mode of a mierodischarge[J]. Plasma Sources Science and Technology, 2007, 16(1): 23-32.
  • 6Hsu D D, Graves D B. Microhollow cathode discharge stability with flow and reaction[J]. Journal of Physics D: Applied Physics, 2003, 36(23): 2898-2907.
  • 7Boeuf J P, Pitchford L C, Schoenbach K H. Predicted properties of microhollow cathode discharges in xenon[J]. Applied Physics Letters, 2005, 86(7): 071501.
  • 8Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733.
  • 9Deconinck T, Raja L L. Modeling of mode transition behavior in argon microhollow cathode discharges[J]. Plasma Processes and Polymers, 2009, 6(5): 335-346.
  • 10Phelps A V, Petrovic Z Lj. Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons[J]. Plasma Sources Science and Technology, 1999, 8(3): R21-R44.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部