期刊文献+

大尺度磁分散电弧等离子体位形的静电探针诊断 被引量:7

Electric-probe Diagnostics for Plasma Configuration of Large-scale Magnetically Dispersed Arc Plasma
下载PDF
导出
摘要 磁旋转电弧可以产生大面积均匀等离子体:磁分散电弧等离子体。利用快速移动水冷静电探针对大气压氩弧磁分散电弧等离子体进行了诊断,得到发生器弧室内的电子温度分布、电弧位形以及等离子体波动等信息。诊断结果表明:等离子体弧柱区呈圆盘状,并在轴向有较大扩张,弧柱区下游等离子体波动较大,为等离子体云与冷气团混合所致。将探针诊断结果与采用热力学平衡模型的数值计算结果比较,发现2者具有相似的等离子体位形,但实验测量得到的电子温度更高,等离子体分布范围更广。分析认为,这种差异可能是等离子体偏离局域热力学平衡和等离子体的不稳定性造成的。 Magnetically rotating arc can induce large-scale magnetically dispersed arc plasma.Using a fast-moving water-cooling electric probe,we diagnosed large-scale dispersed arc plasma in argon at atmospheric pressure,and obtained its electron temperature profile,arc plasma configuration and plasma fluctuation.It is shown that the arc column exhibits a disk configuration and expands in axial direction.In the meantime,the erratic fluctuation increases in the plasma downstream,which may be a result of the cold air entrainment in the plasma cloud.There is a good comparability in plasma configuration between the measurements and the simulations by local-thermedynamic-equilibrium magneto-hydrodynamic model,while the measurements have relatively higher electron temperature and larger plasma volume phenomenon.Further analysis indicates that the difference may be caused by deviation from thermal equilibrium of plasma and instability of plasma.
出处 《高电压技术》 EI CAS CSCD 北大核心 2013年第7期1633-1639,共7页 High Voltage Engineering
基金 国家自然科学基金(11035005 50876101 10675122)~~
关键词 静电探针 分散电弧等离子体 电子温度 电弧位形 磁旋转电弧 等离子体波动 electric-probe dispersed arc plasma electron temperature plasma configuration magnetically rotating arc plasma fluctuation
  • 相关文献

参考文献12

  • 1Polyakov S P, Rozenberg M G. Study and generalization of volt- ampere and thermal characteristics of a two-jet plasmatron[J].Journal of Engineering Physics, 1977, 32(6): 675-682.
  • 2Harry J E, Knight R. Production of a large volume discharge u- sing a multiple arc system[J]. IEEE Transactions on Plasma Science, 1979, 7(3): 248-254.
  • 3Gold D, Boner C, Chauvin G, et al. A 100-kW three phase AC plasma furnace for spheroidization of aluminum silicate particles[J].Plasma Chemistry and Plasma Processing, 1999, 1 (2): 161-178.
  • 4Slinkman D, Sacks R. Structure and dynamics of a magnetron DC arc plasma[J]. Applied Spectroscopy, 1990, 44(1): 76-83.
  • 5Xia W D, Li L C. Dynamics of large-scale magnetically rotating arc plasmas[J]. Applied Physics Letters, 2006, 88(21) : 1063- 1065.
  • 6Baeva M, Uhrlandt D. Non-equilibrium simulation of the spatial and temporal behavior of a magnetically rotating arc in argon[J]. Plasma Sources Science and Technology, 2011, 20(3): 035008.
  • 7Zhou H L, Li L C, Cheng L, et al. ICCD imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source[J].IEEE Transactions on Plasma Science, 2008, 36 (4), :1084-1085.
  • 8Demidov V I, Ratynskaia S V. Electric probes for plasmas., the link between theory and instrument[J]. Review of Scientific Instruments, 2002, 73( 10): 3409-3439.
  • 9Yang G, Pfender E. Experimental investigations of the anode boundary layer in high intensity arcs with cross flow[J]. Jour nal of Physics D: Applied Physics, 2006, 39(13): 2764-2774.
  • 10Sanders N A, Pfender E. Measurement of anode falls and an- ode heat transfer in atmospheric pressure high intensity arcs [J]. Journal Applied Physics, 1984, 55(3): 714-722.

二级参考文献8

  • 1Weidong Xia, Lincun Li. Dynamics of large-scale magne- tically rotating arc plasmas [J]. Appl. Phys. Lett., 2006, 88 (21): 1063-1065.
  • 2Demidov V I. Electric probes; for plasmas: the link between theory and instrument [J]. Rev. Sci. Instrum., 2002, 73(10): 3409-3449.
  • 3E.Leveroni. Electric probe measurements in the boundary layer of thermal arcs: theory and experiments [D]. Minnesota: University of Minnesota, 1990.
  • 4Yang G, Pfender E. Experimental investigations of the anode boundary layer in high intensity arcs with cross flow [J]. J. Phys. D, Appl. Phys., 2006, 39(13): 2764 -2774.
  • 5Tanaka M, Ushio M. Observations of the anode boundary layer free-burning argon arcs [J]. J. Phys. D, Appl. Phys., 1999, 32(8): 906-912.
  • 6Sanders N A, Pfender E. Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs [J]. J. Appl. Phys., 1984, 55(3): 714-722.
  • 7Srivastava A K. Characterization of atmospheric pressure glow discharge in helium using Langmuir probe, emission spectroscopy, and discharge resistivity [J]. IEEE Transactions on Plasma Science, 2007, 35(4): 1135 -1141.
  • 8Luhmann J, Benilov M S. Determination of HID electrode falls in a model lamp II: Langmuir-probe measurements [J]. J. Phys. D, Appl. Phys., 2001, 35(14): 1631-1638.

共引文献1

同被引文献115

引证文献7

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部