期刊文献+

轴向磁场对焊接电弧作用的数值模拟研究 被引量:4

Simulation of Welding Arc in Axial Magnetic Field
下载PDF
导出
摘要 采用耦合阴极模型模拟轴向磁场对焊接电弧的作用,分析了轴向磁场对焊接电弧位形的作用机制。计算结果显示,随轴向磁场增加:阴极弧根收缩;阴极附近等离子体温度升高,高温核心径向增大,弧柱收缩程度增加;阳极附近弧柱径向张开,中心温度降低;阳极表面电流密度和压力分布呈环状结构;阳极加热面增大,极值温度降低,出现温度平顶;电弧对阳极的传热量增加。分析认为,轴向磁场与电弧径向电流间的Lorentz力作用使近阳极区电弧旋转流动,产生磁抽吸作用,使阴极弧根和近阴极弧柱收缩,而阴极弧根收缩增强了阴极射流,并且抑制近阳极区电弧扩张。 Numerical simulation of welding arc in axial magnetic field(AMF) at atmospheric pressure is performed with an ideal magnetic hydromechanics dynamics(MHD) model of coupled plasma and cathode.Hence the mechanism of the welding arc affected by the AMF is analyzed.The calculation results indicate that,with the increase of AMF,the cathode arc root and the arc column near the cathode shrink,the plasma temperature near the cathode increases,the arc column near the anode expands radically,yet the core temperature decreases;the current density and the pressure of the anode arc root are both torus in configuration,the heated area of the anode increases,the plasma temperature near the anode decreases,the maximum temperature of the anode surface decreases,a temperature flat appears,and the heat transferred to the anode increases.The AMF produces a "magnetic sucking" effect through inducing arc rotating near the anode by the Lorentz effect which will enhance upstream cooled gas flow.The effect of low pressure in plasma core,together with the cooling effect by upstream cool gas,will shrink the cathode arc root and the arc column near the cathode.The shrinkage of the cathode root enhances the cathode jet,as a result,the expansion of arc column near the anode is limited.
出处 《高电压技术》 EI CAS CSCD 北大核心 2013年第7期1649-1654,共6页 High Voltage Engineering
基金 国家自然科学基金(11035005 50876101 10675122)~~
关键词 焊接电弧 阴极弧根 轴向磁场 磁抽吸 阴极射流 电弧等离子体位形 welding arc cathode arc root axial magnetic field magnetically sucking cathode jet arc plasma configuration
  • 相关文献

参考文献19

二级参考文献21

  • 1贾昌申,肖克民,殷咸青.焊接电弧的等离子流力[J].焊接学报,1994,15(2):101-106. 被引量:20
  • 2贾昌申,殷咸青.纵向磁场中的焊接电弧行为[J].西安交通大学学报,1994,28(4):7-13. 被引量:25
  • 3雷银照 励庆孚.-[J].西安交通大学学报,1989,23(1):109-109.
  • 4Xia Weidong, Li Lincun, Zhao Yuhan, et al. 2006, Applied Physics Letters, 88:211501.
  • 5Li Lin cun, Chen Quan, Zhou Heling, et al. 2008, IEEE Transactions on Plasma Science, 36:1080.
  • 6Lowke J, Morrow R, Haidar J. 1997, J. Phys. D: Appl. Phys., 30:2033.
  • 7Xia Weidong, Zhou Heling, Zhou Zhipeng, et al. 2008, IEEE Transactions on Plasma Science, 36:1048.
  • 8Li Lincun, Xia Weidong. 2008, Japanese Journal of Applied Physics, 47:P273.
  • 9Benilov M S, Marotta A. 1995, J. Phys. D: Appl. Phys., 28:1869.
  • 10Hsu K C, Pfender E. 1983, J. Appl. Phys., 54:3818.

共引文献61

同被引文献61

  • 1Reis R P, Scotti A, Norrish J, et al. Investigation on welding arc interruptions in the presence of magnetic fields: arc length, torch angle and current pulsing frequency influence[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 133-139.
  • 2Zhang H, Li X D, Zhang Y Q, et al. Rotating gliding arc codriven by magnetic field and tangential flow[J]. IEEE Transactions on Plasma Science, 2012, 40(12): 3493-3498.
  • 3Su Y J, Zhang Y Z, Wei H, et al. Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge[J]Carbon, 2012, 50(7): 2556-2562.
  • 4Kim K S. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: diamagnetic effect of arc column [J]. Applied Physics Letters, 2009, 94(12): 121501.
  • 5Sugitani Y, Kobayashi Y, Murayama M. Development and application of automatic high speed rotation arc welding[J]. Welding International, 1991, 5(7): 577-583.
  • 6Slinkman D, Sacks R. Structure and dynamics of a magnetron DC arc plasma[J]. Applied Spectroscopy, 1990, 44(1): 76-83.
  • 7Slinkman D, Sacks R. A magnetron DC arc plasma for aerosol analysis[J]. Applied Spectroscopy, 1990, 44( 1): 83-90.
  • 8Szente R N, Munz R J, Drouet M G. Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen[J]. Journal of Physics D: Applied Physics, 1988, 21(6): 909-913.
  • 9Xia W D, Li L C, Zhao Y H, et al. Dynamics of large-scale magnetically rotatiug arc plasmas[J]. Applied Physics Letters, 2006, 88(21): 211501.
  • 10Baeva M, Uhrlandt D. Non-equilibrium simulation of the spatial and temporal behavior of a magnetically rotating arc in argon[J]. Plasma Sources Science & Technology, 2011, 20(3): 035908.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部