期刊文献+

一种新型不规则三维排样构造算法 被引量:3

A Novel Constructive Algorithm for Irregular Three-dimensional Packing Problems
下载PDF
导出
摘要 基于最小势能原理,提出了一种新型不规则三维排样构造算法(HAPE3D):容器内部均匀分布多个离散排样点,零件依次平移至每个排样点,然后绕x、y、z轴旋转,最终找到使零件重心最低的最优排样姿态.文中还提出了一个多面体重叠检测算法,令HAPE3D摆脱了临界多面体束缚.算例表明,HAPE3D能够处理任意形状的多面体零件,并可以考虑零件旋转,同时具备孔洞填充功能.HAPE3D的速度也较快,使其与现代启发式算法混合成为可能. This paper presented a novel constructive algorithm(HAPE3D) for irregular three-dimensional packing problems based on the principle of minimum total potential energy.Many equally spaced points were set in the container.Each spare part was moved to the points one by one and was rotated by an angle around the x,y and z axis.An optimal attitude was found at which the spare part had the lowest center of gravity.In addition,a novel technique for polygon overlap testing was proposed which enabled the HAPE3D to get out of the dependence on no-fit polyhedron.Numerical experiment shows that the HAPE3D is capable of hole-filling and packing the arbitrarily shaped spare part which is permitted to rotate.Moreover,the HAPE3D is fast,making it possible to hybridize with one of meta-heuristics.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第7期1060-1064,共5页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2009AA093303)
关键词 三维排样 不规则排样 构造算法 多面体重叠检测 优化 three-dimensional packing irregular packing constructive algorithm polyhedron intersection detecting test optimization
  • 相关文献

参考文献3

二级参考文献40

  • 1Zhang S Q, Zhang J Y (2010) Theoretical analytics of stereographic projection on 3D-objects' intersection predicate[J]. International Journal of Geographical In- formation Sciences, 24 (1): 25-46.
  • 2Shiode N (2001) 3D urban models: recent developments in the digital modeling of urban environments in three-dimensions [J]. GeoJournal, 52(3):263-269.
  • 3Coors V (2003) 3D-GIS in networking environments[J] Computers, Environment and Urban Systems, 27(4) 345-357.
  • 4Kwan M P, Lee J (2004) Geovisualization of human ac- tivity patterns using 3D GIS: a timegeographical ap- proach[M]//Goodchild M F, Janelle D G (Eds.). Spatially integrated social science. New York: Oxford University Press.
  • 5Lee J, Kwan M P (2005) A combinatorial data model for representing topological relations among 3D geographical features in micro-spatial environments[J]. International Journal of Geographical Information Science, 19(10): 1039-1056.
  • 6Stoter J E (2002) 3D cadastres, state of the art: from 2D parcels to 3D registrations[J]. GIM International, the World Magazine for Geomatics, 16(2).
  • 7Zlatanova S (2002) Advances in 3D GIS[J]. Quarterly Review of Disegno Dig#ale e Design, 1(4): 24-29.
  • 8Zlatanova S, Bandrova T (1998) User requirements for the third dimensionality[C]. E-mail Seminar of Cartogra- phy 1998: Maps of the Future, Sofia, Bulgaria.
  • 9Lee J (2008) Spatial data analysis in 3D G1S[M]// Oosterom P,. Zlatanova S, Penninga F,et al.(Eds.). Ad- vances in 3D Geoinformation System: Lecture Notes in Geoinformation and Cartography. New York: Springer.
  • 10Guo W, Zhan P, Chen J (1998) Topological data model for 3D GIS[J]. IAPRS, 32(4): 657-661.

共引文献73

同被引文献13

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部