期刊文献+

新型给体-受体型聚合物的合成及其在本体异质结聚合物太阳能电池中的应用 被引量:4

Synthesis of New Donor-Acceptor Copolymer and Its Application in Organic Bulk Hetero-junction Solar Cells
原文传递
导出
摘要 设计、合成了侧链含有强吸电结构的丙二酸二丁酯受体单元与苯并[1,2-b:4,5-b′]二噻吩给体单元交替共聚物PBDTDT,研究了其热学、光学、电化学性质以及与受体PC71BM([6,6]-苯基C71丁酸甲酯)共混作为活性层制备成本体异质结聚合物有机太阳能电池的光伏性质,考察了PBDTDT与PC71BM不同比例时的光伏性能,当聚合物PBDTDT和PC71BM质量比为1∶3制备的器件,其开路电压达到了0.82 V,能量转换效率(PCE)为0.90%,短路电流为3.25 mA/cm2,填充因子FF为0.338,同时将其与同等工艺制备的poly(3-hexylthiophene)(P3HT)太阳能电池的光伏性能进行比较,相同工艺下制备的P3HT电池的开路电压仅为0.55 V,由PBDTDT制备的电池开路电压比P3HT电池的开路电压高出0.29V,同时分析了PBDTDT能量转换效率较P3HT低的原因. Alternative copolymer (PBDTDT) was synthesized from acceptor unit with strong electro-withdrawing structure of dibutyl malonate in branch chain and donor unit based on benzo[1,2-b:4,5-b']dithiophene. And its thermal, optical, electro- chemical properties and photovoltaic properties blending with [6,6]-phenyl-C71 butyric acid methyl ester as the active layer in the bulk hetero-junction devices of organic solar cells were investigated. The influence of different ratio of polymer PBDTDT and PCvIBM on the photovoltaic properties was also studied. And the open voltage reached 0.82 V, when the weight ratio of PBDTDT and PC71BM is 1 : 3, and its power conversion efficiency (PCE) was 0.90%, with Voc of 0.82 V, Js of 3.25 mAJcm2 and FF of 33.8%. Comparing with the poly(3-hexylthiophene) (P3HT) in the same method, the solar cells with P3HT blending with PCyIBM as the active layer can only get 0.55 V, which can be lower about 0.29 V than that of the PBDTDT. And the possible factors resulting in low PCE and the higher open voltage than that of P3HT were analyzed.
出处 《有机化学》 SCIE CAS CSCD 北大核心 2013年第7期1522-1526,共5页 Chinese Journal of Organic Chemistry
基金 国际自然科学基金(No.21074144)资助项目~~
关键词 丙二酸二丁酯 交替共聚物 有机太阳能电池 dibutyl malonate alternative copolymer organic solar cells
  • 相关文献

参考文献1

二级参考文献19

  • 1H.Hoppe, N.S.Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, Journal of Materials Chemistry, 16, 45(2006).
  • 2D.Muhlbacher, M.Scharber, M.Morana, Z.Zhu, D.Waller, R.Gaudiana, C.Brabec, High photovoltaic performance of a low-bandgappolymer, Advanced Materials, 18, 2884(2006).
  • 3M.Morana, M.Wegscheider, A.Bonanni, N.Kopidakis, S.E.Shaheen, M.Scharber, Z.Zhu, D.Waller, R.Gaudiana, C.Brabec, Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications, Ad- vanced Functional Materials, 18, 17"57(2008).
  • 4X.N.Yang, J.Loos, S.C.Veenstra, Nanoscale morphology of high-performance polymer solar cells, Nano Letters, 5, 579(2005).
  • 5W.L.Ma, C.Y.Yang, X.Gong, K.Lee, A.J.Heeger, Ther- mally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Fnct. Mater., 15, 1617(2005).
  • 6G.Li, V.Shrotriya, J.S.Huang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4, 864(2005).
  • 7G.Li, Y.Yao, H.Yang, V.Shrotriya, G.Yang, Y.Yang, "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv. Funct. Mater., 17, 1636(2007).
  • 8Zhao Y, Xie ZY, Qu Y, Geng YH, Wang LX, Solvent-vapor treatment induced performance enhancement of poly(3- hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells, Appl Phys Lett., 90, 043504(2005).
  • 9D.Muhlbacher, M.Scharber, M.Morana, High photovoltaic performance of a low-bandgap polymer, Advanced Mate- rials, 18, 2884(2006).
  • 10F.C.Chen, H.C.Tseng, C.J.Ko, Solvent mixtures for im- proving device efficiency of polymer photovoltaic devices, Appl. Phys. Lett., 92, 103316(2008).

共引文献1

同被引文献10

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部