期刊文献+

超滤技术在给水处理中的运用及运行特性研究 被引量:3

Application and Operational Performance of Ultrafiltration Technology in Water Treatment
原文传递
导出
摘要 采用混凝/沉淀/浸没式超滤工艺处理西江原水,考察了浸没式超滤工艺对COD Mn、氨氮、浊度和颗粒物的去除效率,研究了试验期间系统跨膜压差(TMP)的变化,确定了超滤工艺适宜的跨膜通量,最后探讨了不同化学清洗方法对膜污染的控制。试验结果表明:混凝/沉淀/浸没式超滤工艺出水水质稳定,处理效果安全可靠,膜出水COD Mn和氨氮浓度均达到了《生活饮用水卫生标准》(GB 5749—2006)和《饮用净水水质标准》(CJ 94—2005);膜出水浊度<0.1 NTU。当膜通量在30 L/(m2·h)左右时,TMP增长缓慢;当膜通量>40 L/(m2·h)时,膜污染严重,TMP增长明显加快,故实际工程应选择适当膜通量。采用先酸(HCl)洗后碱(NaClO)洗的化学清洗方法可以有效控制膜污染。 Coagulation/sedimentation/immersed uhrafihration technology was applied to treat Xi- jiang River source water. The removal efficiencies of CODMn, ammonia nitrogen, turbidity and suspended solids by submerged ultrafihration technology were investigated. The variation of transmembrane pressure (TMP) during the experiment was studied, and the transmembrane flux (TMF) was calculated. Different chemical cleaning methods for controlling membrane fouling were evaluated. The results showed that the treated water by the coagulation/sedimentation/immersed ultrafiltration technology was steady and safe. The concentrations of CODM, and ammonia nitrogen in the effluent could meet the Standards for Drinking Water Quality (GB 5749 -2006) and the Water Quality Standard for Fine Drinking Water (CJ 94 - 2005). The turbidity of treated water was less than 0.1 NTU. The TMP inereased slowly when the TMF was 30 L/( ㎡ · h). However, when the TMF exceeded 40 L/( ㎡ . h), membrane fouling became problematic, and the TMP increased obviously. So the TMF should be maintained at a low value. Mem- brane fouling could be effectively controlled by chemical cleaning with first HC1 and then NaC10.
出处 《中国给水排水》 CAS CSCD 北大核心 2013年第15期150-153,共4页 China Water & Wastewater
基金 广州市自来水公司科技攻关计划项目(西村水厂[2009]专-024号)
关键词 浸没式超滤工艺 膜通量 跨膜压差 膜污染 化学清洗 submerged uhrafiltration technology membrane flux transmembrane pressure membrane fouling chemical cleaning
  • 相关文献

参考文献3

二级参考文献14

  • 1American Water Works Assodation. AWWA Manual 53: Microfiltration and Ultrafiltration Membranes for Drinking Water. First edition. Denver: Glacier Publishing Services, Inc, 2005.
  • 2Atassi A, Dunn A. Design membrane system ancillary equipment: The real challenge to successful system implementatiorL AWWA conference, 2004.
  • 3Ratnayaka D D, Lee M F, Tiew K N, et al. Application of membrane technology to retrofit large-scale conventional water treatment plant in Singapore. IWA conference,2008.
  • 4Garcia-Aleman J, Mains K, Farr A. Integrating 80 MGD of membranes, ozone and biological pretreatment at Lakeview WTP. AWWA membrane technology conference, 2005.
  • 5Janson A,O'Toole G, Singh M, et al. A 273 000 ma/d immersed membrane system for surface water treatment pilot system results and fullscale system design. Seoul: IWA Specialised Conference on Water Environment-Membrane Technology, 2004.
  • 6LELAND D.A cryptosporidiosis break in a filtered water supply[J].AWWA,1992,85(6):34-42.
  • 7LECHEVALLIER W,WILLIAM D N.Examining Relationships Between Particle counts and Giardia,Cryptosporidium,and Turbidity[J].J.AWWA,1992,84(12):54-60.
  • 8TOM H,BRIAN C.Particle counters as tools for managing cryptosporidium risk in water treatment[J].Water Science and Technology,1997,36 (4):143-149.
  • 9GRAUN G F.Waterborne outbreaks of cryptosporidiosis[J].J.AWWA,1998,90(9):81-91.
  • 10HAYES M B.Large community outbreak of cryptosporidiosis due to contamination of a filtered public water supply[J].New England J Medicine,1989,320:1372-1376.

共引文献121

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部