期刊文献+

一种格缩减辅助MIMO检测的组合量化误差校正方法 被引量:3

Quantization Error Correction Scheme for Lattice-reduction Aided MIMO Detection
下载PDF
导出
摘要 格缩减技术(LR)可以用于提升多入多出系统(MIMO)线性和非线性检测的性能.采用该方法后会引起检测信号星座图空间的畸变,导致变化后信号取值的非均匀分布和量化错误的易扩散性,会阻碍检测性能的提高.为了进一步提升检测性能,提出奇偶量化的组合量化误差校正方法.仿真结果显示,加入该方法的格缩减辅助检测的性能得到了明显的提升,而且可以很好的逼近最大似然检测(ML)的性能.和目前已知的其它同类量化误差校正方法相比,在实现相同的检测性能提升时,本文提出的组合量化误差校正方法增加的候选矢量减少了一半,即增加的运算复杂度最低. Lattice-Reduction technology has been proven that can enhance the performance of both linear and nonlinear MIMO detec- tion algorithms. However, the signal transformation of Lattice-Reduction aided detection will introduce the distortion of the constella- tion, and cause the diffusion of quantization error, which may finally increase the bit error rate. This paper proposes an improved par- ity-based quantization error correction scheme. Simulation results show that the performance of lattice reduction aided MIMO detection based on the proposed quantization scheme has a significant improvement, and is very close to ML. Compared to other published quantization error correction schemes, this scheme can achieve the same performance at the cost of a half number of candidate sym- bols, i.e. with the lowest additional complexity.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第8期1926-1929,共4页 Journal of Chinese Computer Systems
基金 国家重大专项项目(2011ZX03003-003-03)资助 复旦大学专用集成电路与系统国家重点实验室自主项目(11MS003)资助
关键词 MIMO系统 格缩减 奇偶量化 量化误差校正 , MIMO system lattice-reduction parity-based quantization quantization error correction
  • 相关文献

参考文献1

二级参考文献13

  • 1Telatar I E. Capacity of multi-antenna Gaussian channels [J]. EurTransTelecom, 1999, 10(6): 585-595.
  • 2Wolniansky P W, Foschini G J, Golden G D, et al. V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel [ C ] // ISSSE'98. Pisa: IEEE Press, 1998 : 230-235.
  • 3Ahmed D K, Amir S, Jean P C, et al. New list sphere decoding and iterative synchronization algorithms for MI- MO-OFDM detection with LDPC FEC[ J]. IEEE Trans on Vehicular Technology, 2008, 57(6) : 3510-3524.
  • 4Yang Yijin, Zhao Chunming, Zhou Peng, et al. MIMO detection of 16QAM signaling based on semidefinite relaxation[ J]. IEEE Trans on Signal Processing, 2007, 14 ( 11 ) : 797-799.
  • 5Yao Huan, Wornell G W. Lattice-reduction-aided detectors for MIMO communication systems [ C ] //// GLOBECOM'02. Taiwan: IEEE Press, 2002 : 424-428.
  • 6Windpassinger C, Fischer R F H. Low-complexity nearmaximum-likelihood detection and precoding for MIMO systems using lattice reduction [ C ] //IEEE Information Theory Workshop. Paris: IEEE Press, 2003: 324-327.
  • 7Wubben D, Bohnke R, Kuhn V, et al. Near maximum likelihood detection of MIMO systems using MMSE-based lattice reduction [ C ] // ICC 2004. Paris: IEEE Press, 2004 : 798-802.
  • 8Lee D J, Kim R W, Byun Y S. Improved lattice reduction aided detection based on extended noise variance matrix for MIMO systems [ C ] //SPAWC 2007. Helsinki: IEEE Press, 2007: 1-5.
  • 9Park S B, JongJ S, Lee D J, etal. List LRAD based on semi-definite relaxation for MIMO systems [ C ]//ICACT 2008. Korea: IEEE Press, 2008: 1196-1199.
  • 10Nguyen T D, Fujino T, Tran X N. Quantization error correction scheme for lattice-reduction aided linear detection in MIMO systems [ C] //WIMOB 2007. New York: IEEE Press, 2007: 11-16.

共引文献1

同被引文献21

  • 1MARINELLO J C, TAUFIK A. Lattice Reduction AidedDetector for MIMO Communication Via Ant Colony Op-timisation [J ]. Wireless Personal Communications,2014, 77(1) :63-85.
  • 2KNIEVEL C,HOEHER P A. On Particle Swarm Optimi-zation for MIMO Channel Estimation [ J ]. Journal of Elec-trical & Computer Engineering, 2012,2012(9) :1-10.
  • 3DORIGO M, STUTZLE T. Ant Colony Optimization: O- verview and Recent Advances [ J ]. International, 2010, 17(5) :227-263.
  • 4HENRICI P. Bounds for iterates, inverses,spectral vari-ation and fields of values of non-normal matrices[ J]. Nu-merische Mathematik, 1962, 4(1) :24-40.
  • 5AU E K S,WANG C,SFAR S,et al. Error probabilityfor MIMO zero-forcing receiver with adaptive power allo-cation in the presence of imperfect channel state informa-tion [J ]. IEEE Transactions on Wireless Communica-tions, 2007, 6(4) :1523-1529.
  • 6LAIN J K,CHEN J Y. Near - MLD MIMO DetectionBased on a Modified Ant Colony Optimization [ J ]. Com-munications Letters IEEE, 2010,14(8) :722-724.
  • 7KIM S. Transmit Antenna Selection for Spatial Multiple-xing UWB MIMO Systems Using Sorted QR Decomposi-tion [J ]. Ieice Transactions on Fundamentals of Electron-ics Communications & Computer Sciences, 2012, 95(E95. A) :1426-1429.
  • 8汪蓓,朱琦.MIMO-OFDM系统中一种改进的V-BLAST检测算法[J].信号处理,2009,25(9):1409-1413. 被引量:8
  • 9赵晓群,章惜珍,屈非,王潇.MIMO系统LLL格基约减检测技术研究[J].大连民族学院学报,2011,13(1):19-23. 被引量:3
  • 10李峰,李兆训,陈鹤.MIMO系统中格点减少检测算法研究[J].计算机应用研究,2011,28(6):2297-2299. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部