摘要
基于二叉树模型提出一种聚合-再分花费原则并构建一个新的具有可传递性的离线可分电子现金方案.方案中聚合-再分花费原则能够使二叉树上的每个节点都可以被花费,减少了银行在取款过程中的签名次数和存款过程中的运算量,同时能实现用户对商品的精确支付;在保证用户匿名性和电子现金信息量不随传递次数增加的前提下,实现了电子现金的可传递性.通过非形式化分析表明,该方案具有良好的安全性和高效性.
This paper presented a spend principle named combination-subdivision based on the model of binary tree, and then presen- ted a new off-line divisible e-cash scheme with transferability. In the scheme, each node of the binary tree can be spent based on the principle which can realize accurate payment and reduce the bank's signatures in the withdrawal protocol and operations in the deposit protocol. This scheme also realized transferability in the premise of user's anonymity and no increase of e-cash information. The non- formal analysis showed that this scheme has better security and efficiency.
出处
《小型微型计算机系统》
CSCD
北大核心
2013年第8期1964-1968,共5页
Journal of Chinese Computer Systems
基金
河北省重大技术创新项目(09213562Z)资助
河北省自然科学基金青年科学基金(G2011203195)资助
关键词
可分电子现金
二叉树
可传递性
聚合-再分
divisible electronic cash
binary tree
transferability
combination-subdivision