期刊文献+

基于目标空间分解的自适应多目标进化算法 被引量:1

An adaptive multi-objective evolutionary algorithm directed by objective space decomposition
下载PDF
导出
摘要 针对基于分解的多目标进化算法(MOEA/D)个体与子问题的匹配问题,在分析MOEA/D的进化规律的基础上,提出了一种基于目标空间分解的自适应多目标进化算法(MOEA/OSD)。该算法采用以测试问题的参考点为起点的均匀权重向量分解目标空间,根据个体信息动态选择适合的子问题,并使用辅助向量的方法弥补分解方法的不足。对比实验结果表明,MOEA/OSD拥有较好的收敛性和分布性,采用不同的分解方法均能搜索到最优解,且具有较好的收敛速度。 Aiming at solving the matching problem of individual and sub-problem of the multi-objective evolutionary algo- rithm based on decomposition (MOEA/D), the paper proposes an adaptive multi-objective evolutionary algorithm directed by objective space decomposition (MOEA/OSD) based on the evolution analysis of the MOEA/D. The MOEA/OSD decomposes an objective space by even spread weight vectors whose start points are the reference points, chooses a suitable sub-problem by using the information of individuals, and uses auxiliary weight vectors to compensate for the limitations of the decomposition approaches. The experimental results demonstrates that the MOEA/OSD could not only balance the convergence and diversity effectively but also approach the optimal solution by applying different decomposition approaches, and has a better convergence speed.
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第7期671-678,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61070088) 湖南省教育厅项目(12C0378 11C1224) 湖南省科技厅项目(2011GK3063)资助
关键词 多目标优化 目标空间分解 子问题 自适应 适合的子问题 multi-objective optimization, objective space decomposition, sub-problem, self-adapting, suit-able sub-problem
  • 相关文献

参考文献18

  • 1Ishibuchi H, Sakane Y, Tsukamoto N, et al. Simultane- ous use of different scalarizing functions in MOEA/D. In : Proceedings of the Genetic and Evolutionary Computation Conference, 2010. 519-526.
  • 2Deb K, Pratap A, Agarwal S. A fast and elitist multiob- jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 2 : 182-197.
  • 3Zitzler E, Laumanns M, Thiele L. SPEA2 : improving the strength Pareto evolutionary algorithm. In: Proceedings of the Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems, 2001. 95- 100.
  • 4Knowles J, Come D. The Pareto archived evolution strate- gy: A new baseline algorithm for Pareto multiobjective op- timisation. In: Proceedings of the Congress of Evolution- ary Computation, 1999. 98-105.
  • 5Come D, Jerram N R, Knowles J, et al. PESA-II- Re- gion-based selection in evolutionary multiobjective optimi- zation. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2001. 283-290.
  • 6Ishibuchi H, Tsukamoto N, Hitotsuyanagi Y. Effective- ness of scalability improvement attempts on the perform- ance of NSGA-II for many-objective problems. In: Pro- ceedings of the Genetic and Evolutionary Computation Conference, 2008. 649-656.
  • 7Schaffer J D. Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelli- gence, optimization, adaptation, pattern recognition ) : [PhD thesis], Nashville, TN, USA, 1984. AAI8522492.
  • 8Jin Y, Okabe T, Sendho B. Adapting weighted aggrega- tion for multiobjective evolution strategies. In: Proceed- ings of the Evolutionary Multi-Criterion Optimization, 2001. 96-110.
  • 9Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE transactions on evolutionary computation, 2007. 712-731.
  • 10Chang P C, Chen S H, Zhang Q, et al. MOEA/D for flowshop scheduling problems. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation. 2008. 1433 -1438.

二级参考文献2

共引文献398

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部