期刊文献+

距离和损失函数约束正则化的AdaBoost算法 被引量:1

AdaBoost algorithm based on distance and loss function constraint regularization
下载PDF
导出
摘要 基于距离函数和损失函数正则化的权值更新模式,使用相关熵距离函数,Itakura-Saito距离函数,指数一次近似距离和相关熵损失函数结合,实现了三种AdaBoost弱分类器权值更新算法。使用UCI数据库数据对提出的三种算法AdaBoostRE,AdaBoostIE,AdaBoostEE与Real AdaBoost,Gentle AdaBoost和Modest AdaBoost算法作了比较,可以看到提出的AdaBoostRE算法预测效果最好,优于Real AdaBoost,Gentle AdaBoost和Modest AdaBoost算法。 According to weight update model via distance and lost function regularization, proposed by J.Kivinen and M.K.Warmuth, using relative entropy, Itakura-Saito, first order exponential approximation distance function, combined with relative entropy lost function, this paper devises three sorts of weight update method of weak classifier of AdaBoost. Using the UCI real datasets, the three algorithms AdaBoostRE, AdaBoostlE, AdaBoostEE are compared with three leading assembly classifier: Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Experimental results show promising performance of the proposed method.
出处 《计算机工程与应用》 CSCD 2013年第15期133-135,200,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.21006127 No.20976193) 中国石油大学(北京)基础学科研究基金项目资助
关键词 距离函数 损失函数 正则化 ADABOOST算法 distance function loss function regularization AdaBoost algorithm
  • 相关文献

参考文献16

  • 1Xi Y T, Xiang Z J, Ramadge P J, et al.Speed and sparsity of regularized boosting[C]//Proceedings of the Twelfth Inter- national Conference on Artificial Intelligence and Statistics, 2009.
  • 2Rudin C, Schapire R E.Margin-based ranking and an equiva- lence between AdaBoost and RankBoost[J].Journal of Machine Learning Research, 2009,10 : 2193-2232.
  • 3Buhlmann P, Hothorn T.Boosting algorithms:regularization, prediction and model fitting[J].Statistical Science, 2007, 22 (4) :477-505.
  • 4Rudin C, Schapire R E, Daubechies I.Boosting based on a smooth margin[C]//COLT, 2004: 502-517.
  • 5Rudin C,Daubechies I,Schapire R E.The dynamics of Ada- Boost: cyclic behavior and convergence of margins[J].Journal of Machine Learning Research, 2004,5 : 1557-1595.
  • 6Collins M, Schapire R E, Singer Y.Logistic regression, Ada- Boost and Bregman distances[J].Machine Learning,2002,48: 253-285.
  • 7Schapire R E.The convergence rate of AdaBoost[C]//The 23rd Conference on Learning Theory,2010.
  • 8Kivinen J, Warmuth M K.Exponentiated gradient versus gra- dient descent for linear predictors[J].Information and Com- putation, 1997,132(2) : 1-63.
  • 9Freund Y.Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995,121 (2) : 256-285.
  • 10Ratsch G,Onoda T,Mfiller K R.Soft margins for AdaBoost[J]. Machine Learning,2001,42(3) :287-320.

同被引文献12

  • 1王晓慧.线性判别分析与主成分分析及其相关研究评述[J].中山大学研究生学刊(自然科学与医学版),2007,28(4):50-61. 被引量:40
  • 2Wee CY, Yap PT, Zhang DQ, et al. Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 2012,59(3) :2045-2056.
  • 3Cho Y, Seong JK, Jeong Y, et al. Individual subject classification for Alzheimer's disease based on incremental learning using a spa- tial frequency representat~,on of cortical thickness data. Neuroim- age, 2012,59(3) :2217-2230.
  • 4Ahmed OB, Benois-Pineau J, AUard M, et al. Classification of Alzheime~s disease subjects from MRI using hippocampal visual features. Multimedia Tools and Applications, 2015, 74 (4) : 1249-1266.
  • 5Freund Y, Schapire RE. A decision-theoretic generalization of on- line learning and an application to boosting. J Comp Sys Sci, 1997,55(1) : 119-139.
  • 6Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brian Dev, 2007,29(2) :83-91.
  • 7Jones S, Johnstone D, Wilson R. An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. J Bank Finance, 2015,56 : 72-85.
  • 8Lindsay J, Laurin D, Verreault R, et al. Risk factors for Alzhei- mer's disease: A prospective analysis from the canadianstudy of health and aging. Am J Epidemiol, 2002,156(5) :445-453.
  • 9Azad NA, Bugami MA, Loy-English I. Gender differences in dementia risk factors. Gender Medicine, 2007,4(2) : 121-129.
  • 10Westman E, Muehlboeck J, Simmons A. Combining MRI and CSF measures for classification of Alzheimer's disease and predic- tion of mild cognitive impairment conversion. Neuroimage, 2012,62(1) : 229-238.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部