期刊文献+

一种面向移动终端的自然口语任务理解方法 被引量:1

A Method to Understand Spontaneous Spoken Tasks for Mobile Terminals
下载PDF
导出
摘要 随着移动互联时代的到来和语音识别技术的日益成熟,通过语音的交互方式来使用移动终端成为一种趋势.如何理解用户自然状态下的口语输入,传统的做法是手写上下文无关的文法规则,但是文法规则的书写需耗费大量的人力和物力,很难去维护和更新.提出一种采用支持向量机和条件随机场串行结合的方法,把口语任务理解分解为任务发现和信息抽取两个过程,并最终将任务表达成语义向量的形式.最终对"讯飞语点"语音助手用户返回的八个不同的任务种类的数据进行了测试,在一比一的噪声中识别任务语义表达的准确率为90.29%,召回率为88.87%. With the development of mobile Internet and automatic speech recognition (ASR), the mobile terminal through voice interaction has become a trend. The traditional method to understand user's spontaneous spoken language is to write context-free grammars(CFGs)manually. But it is laborious and expensive to construct a grammar with good coverage and optimized performance, and difficult to maintain and update. We proposed a new approach to spoken language understanding combining support vector machine(SVM)and conditional random fields(CRFs), which detect task and extract task semantic information from spontaneous speech input respectively. Tasks are represented as a vector of task name and semantic information. Eight different tasks from "iFLYTEK yudian" voice mobile assistant are tested, and the precision and recall of semantic representation of query are 90.29% and 88.87% respectively.
出处 《计算机系统应用》 2013年第8期124-129,共6页 Computer Systems & Applications
关键词 口语理解 任务发现 信息抽取 支持向量机 条件随机场 spoken language understanding task detection information extraction support vector machine conditional random fields
  • 相关文献

参考文献19

  • 1Lafferty J, McCallum A, Pereira E Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proc. of ICML, 2001: 282-289.
  • 2Ward W. Recent improvements in the CMU spoken language understanding system. Proc. Human Language Technology Workshop, Plainsboro, NJ, 1994: 213-216.
  • 3Seneff S. TINA: A natural language system for spoken language applications. Comput. Linguistics,1992,18(1):61-86.
  • 4Dowding J, Gawron JM, Appelt D, Bear J, Cherny L, Moore 1L Moran D. Gemini: A natural language system for spoken- language understanding. Proc. 31st Ann. Meeting Association for Computational Linguistics, Columbus, Ohio, 1993:54-61.
  • 5Price P. Evaluation of spoken language system: The ATIS domain. Proc. DARPA Speech and Natural Language Workshop, Hidden Valley, PA, 1990: 91-95.
  • 6Miller S, Bobrow R, Ingria R, Schwartz 1L Hidden under- standing models of natural language. Proe.31 st Ann. Meeting Association for Computational Linguistics, New Mexico State University, 1994: 25-32.
  • 7Pietra SD, Epstein M, Roukos S, Ward T. Fertility models for statistical natural language understanding. Proc. 35th Ann. Meeting Association for Computational Linguistics, Madrid, Spain, 1997: 168-173.
  • 8He Y, Young S. Semantic processing using the hidden vector state model. Journal of Computer Speech & Language. Elsevier, 2005,19(1):85-106.
  • 9Wang YY, Acero A. Combination of CFG and N-gram modeling in semantic grammar learning. Proc. Eurospeech 2003, Geneva, Switzerland, 2003: 2809-2812.
  • 10Wang Y, Acero A, Mahajan M, Lee J. Combining statistical and knowledge-based spoken language understanding in conditional models. Proc. of COLING/ACL, July 2006.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部