期刊文献+

噪声环境下智能机器人语音控制特征提取方法 被引量:6

Speech Control Feature Extraction for Intelligent Robotics Under Noisy Environments
原文传递
导出
摘要 针对机器人的应用场合通常存在各种噪声干扰的问题,提出了一种基于稀疏编码的语音特征提取方法.利用稀疏编码能稀疏表示语音的特性,在梅尔频域对语音增强后提取特征,将稀疏去噪与语音特征提取相融合,实现了混噪语音的有效补偿.在预设场景中的实验结果表明,与现有特征提取方法相比,所提出的语音特征提取方法能有效降低噪声对语音特征的影响,提高机器人语音控制的性能. Despite of significant progress on speech recognition,current techniques cannot satisfy the demands of real applications in robot controls,the main reason is that various noises in environments of robot control substantially degrade the performance of speech recognition.A feature extraction method is proposed based on sparse coding.This method makes use of the de-noising merit of sparse coding and extracts features after removing noise in Mel-frequency domain.Such a strategy integrates spare coding into speech feature extraction and can reduce the effect of noise.Experiments in speech recognition tasks show that the feature proposed possesses strong robustness against various noises and improves the performance of speech recognition in noisy environments.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第3期83-87,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(60575036) 黑龙江省教育厅科研项目(12511101 12511096)
关键词 机器人控制 特征提取 语音识别 稀疏编码 区分性 robot control feature extraction speech recognition sparse coding discriminative
  • 相关文献

参考文献5

  • 1Chen Shaobing, Donoho D, Saunders M. Atomic decom-position by basis pursuit[J]. SIAM Rev, 2001, 43(1) 129-159.
  • 2Davenport M A, Duarte M F, Eldar Y C, et al. Introduc- tion to compressed sensing[ M ]. Cambridge: Cambridge University Press, 2011.
  • 3Wright J, Ma Yi, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceed- ings of IEEE, 2010: 1031-1040.
  • 4Tibshirani R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society Series B, 1996, 58(1): 267-288.
  • 5Chen Shaobing, Donoho D, Saunders M. Atomic decom- position by basis pursuit [ J]. SIAM Journal of Scientific Computing, 1999, 20( 1 ) : 33-61.

同被引文献25

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部