期刊文献+

远距离混凝土桥梁结构表面裂缝精确提取算法 被引量:13

Distant Accurate Crack Extraction Algorithm for Surface of Concrete Bridge Structure
原文传递
导出
摘要 在分析桥梁结构表面裂缝图像特征基础上,结合改进Snake主动轮廓模型图像分割算法,融合距离传感器信息,提出一种综合高分辨率图像采集、裂缝敏感区域截取、孤立噪声去除、裂缝旋转和标记的裂缝提取算法,实现了交互式远距离混凝土桥梁结构表面裂缝的精确提取。分析结果表明:改进Snake主动轮廓模型图像分割算法误分率为3.89%,运算时间为153ms,试验对比裂缝宽度显微镜观测值,裂缝提取绝对误差小于0.05mm,该算法可满足工程检测需求。 Based on the analysis of crack image features of bridge structure surface,with image segmentation algorithm of modified Snake active contour model combined with distant sensor information for accurate crack extraction,the authors proposed an integrated crack extraction algorithm combining with high resolution image acquisition,crack sensitive area clip,isolated noise removing,crack rotation and labeling.With the proposed algorithm,interactive and distant accurate crack extraction of concrete bridge structure surface was realized.The results indicate that the misclassification rate of the modified Snake model is 3.89% and the operation time is 153 ms;compared with observed values by microscope,the absolute error of crack extraction is less than 0.05 mm.The proposed algorithm can meet the engineering detection need.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2013年第4期102-108,124,共8页 China Journal of Highway and Transport
基金 国家自然科学基金项目(60806043) 西安市科技计划项目(CXY1127) 中央高校基本科研业务费专项资金项目(2013G1321039 2013G1321040 2013G1321043)
关键词 桥梁工程 桥梁检测 SNAKE模型 裂缝提取 图像处理 图像分割 bridge engineering bridge detection Snake model crack extraction image processing image segmentation
  • 相关文献

参考文献14

  • 1DILENA M, MORASSI A. Dynamic Testing of a Damaged Bridge[J]. Mechanical Systems and Signal Processing, 2011,25 (1) : 1485-1507.
  • 2ABDEL QADER I, ABUDAYYEH O, KELLY M E. Analysis of Edge-detection Techniques for Crack Identification in Bridges[J]. Journal of Computing in Civil Engineering, 2003,17 (4) : 255-263.
  • 3HUTCHINSON T C, CHEN Z. Improved Image Analysis for Evaluating Concrete Damage[J]. Journal of Computing in Civil Engineering, 2006,20 ( 3 ) : 210- 216.
  • 4NAVON E, MILLER O, AVERBUCH A. Color Im- age Segmentation Based on Adaptive Local Thresh- olds[J]. Image and Vision Computing, 2005,23 (1) : 69-85.
  • 5IYER S, SINHA S K. Segmentation of Pipe Images for Crack Detection in Buried Sewers[J]. Computer- aided Civil and Infrastructure Engineering, 2006,21 (6) :395-410.
  • 6YU S N,JANG J H,HAN C S. Auto Inspection Sys- tem Using a Mobile Robot for Detecting Concrete Cracks in a Tunnel[J]. Automation in Construction, 2007,16 (3) .. 255-261.
  • 7SINHA S K, FIEGUTH P W. Automated Detection of Cracks in Buried Concrete Pipe Images[J]. Auto- mation in Construction, 2006,15 ( 1 ) .. 58-72.
  • 8ZOU Q, CAO Y, LI Q, et al. Crack Tree.. Automatic Crack Detection from Pavement Images [J]. Pattern Recognition I.etters,2012,33(3) ..227-238.
  • 9OH J K,JANG G,OH S,et al. Bridge Inspection Ro- bot System with Machine Vision[J]. Automation in Construction, 2009,18(7) .. 929-941.
  • 10ZHU Z, GERMAN S, BRILAKIS I. Visual Retrievalof Concrete Crack Properties for Automated Post- earthquake Structural Safety Evaluation[J]. Automa- tion in Construction,2011,20(7) :874- 883.

二级参考文献15

  • 1Sonka M,Hlavac V,Boyle R.图像处理、分析与机器视觉[M].艾海舟,武勃,等译.2版.北京:人民邮电出版社,2003:83-127.
  • 2Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 3Caselles V,Kimmel R,Sapiro G.Geodeisic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 4Malladi R,Sethian J A,Vernuri B C.Shape modeling with front propagation:a level set approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(2):158-175.
  • 5Chan T F,Vese L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 6Vese L A,Chan T F.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293.
  • 7Sethian J A.Level set methods and fast marching methods:evolving interfaces in computational geometry,fluid mechanics,computer vision,and materials science[M].London:Cambridge University Press,1999.
  • 8Faugeras O,Keriven R.Variational principles,surface evolution,PDEs level set methods,and the stereo problem[J].IEEE Transactions on Image Processing,1998,7(3):336-344.
  • 9Bertalmio M,Sapiro G,Caselles V,et al.Image inpainting[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2000:417-424.
  • 10Paragios N,Deriche R.Geodesic active contours and level sets for the detection and tracking of moving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280.

共引文献19

同被引文献101

引证文献13

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部